早教吧作业答案频道 -->数学-->
抛物线..抛物线C1:y=-X^2+2mx+n(m.n为常数,且m不=0,n>0)的顶点为A,与Y轴交与点C.抛物线C2与抛物线C1关于Y轴对称.顶点为B.连接ACABBC(1)直接写C2解析式(2)三角形ABC形状...说明理由
题目详情
抛物线..
抛物线C1:y=-X^2+2mx+n(m.n为常数,且m不=0,n>0)的顶点为A,与Y轴交与点C.抛物线C2与抛物线C1关于Y轴对称.顶点为B.连接AC AB BC
(1)直接写C2解析式
(2)三角形ABC形状...说明理由
抛物线C1:y=-X^2+2mx+n(m.n为常数,且m不=0,n>0)的顶点为A,与Y轴交与点C.抛物线C2与抛物线C1关于Y轴对称.顶点为B.连接AC AB BC
(1)直接写C2解析式
(2)三角形ABC形状...说明理由
▼优质解答
答案和解析
(1)抛物线C1的对称轴为 x=m
因为,抛物线C2与抛物线C1关于Y轴对称
所以,抛物线C2的对称轴为 x=-m
所以,抛物线C2的解析式为,y= -X^2-2mx+n (m.n为常数,且m不=0,n>0)
(2)因为,抛物线C2与抛物线C1关于Y轴对称
所以,点A、B关于y轴对称,
所以,⊿ABC为等腰三角形,其中|AC|=|BC|
(以下讨论⊿ABC为等边三角形的特殊情况)
对于抛物线C1,令x=0,则y=n
所以,点C的坐标为(0,n),
又,C1的解析式可转化为y=-(x-m)^2+m^2+n
所以,点A的坐标为(m,m^2+n)
设线段AB与y轴的交点为D,依题意可知D为AB中点
所以,|AD|=m,|CD|=m^2+n-n=m^2
所以,tg∠ACD = tg[(1/2)∠ACB] = |AD|/|CD|=1/m
假如⊿ABC为等边三角形,
则∠ACB=60度,则tg∠ACD = tg(30度)=1/(√3)
则m=√3
综上所述,⊿ABC为等腰三角形;当m=√3时,⊿ABC为等边三角形
因为,抛物线C2与抛物线C1关于Y轴对称
所以,抛物线C2的对称轴为 x=-m
所以,抛物线C2的解析式为,y= -X^2-2mx+n (m.n为常数,且m不=0,n>0)
(2)因为,抛物线C2与抛物线C1关于Y轴对称
所以,点A、B关于y轴对称,
所以,⊿ABC为等腰三角形,其中|AC|=|BC|
(以下讨论⊿ABC为等边三角形的特殊情况)
对于抛物线C1,令x=0,则y=n
所以,点C的坐标为(0,n),
又,C1的解析式可转化为y=-(x-m)^2+m^2+n
所以,点A的坐标为(m,m^2+n)
设线段AB与y轴的交点为D,依题意可知D为AB中点
所以,|AD|=m,|CD|=m^2+n-n=m^2
所以,tg∠ACD = tg[(1/2)∠ACB] = |AD|/|CD|=1/m
假如⊿ABC为等边三角形,
则∠ACB=60度,则tg∠ACD = tg(30度)=1/(√3)
则m=√3
综上所述,⊿ABC为等腰三角形;当m=√3时,⊿ABC为等边三角形
看了 抛物线..抛物线C1:y=-...的网友还看了以下:
因式分解(a^2-a-1)(a^2-a-2)-20 2020-04-05 …
a^2(a+2b)^2-9(x+y)^2q(p+q)^2-6(p-q)+1因式分解a^2(a+2b 2020-04-27 …
sincebefore,sinceago语法解析1请问在现在完成时态里面since5yearsbe 2020-05-22 …
因式分解:a^2(m-b)(m-c)(c-b)+b^2(m-c)(m-a)(a-c)+c^2(m- 2020-06-12 …
因式分解(a^2+b^2+c^2+d^2-ab-ac-ad-bc-bd-cd)(a+b+c+d)^ 2020-06-12 …
三角形+因式分解a^2(b-c)+b^2(c-a)+c^2(a-b)=0求形状 2020-06-12 …
把a^2-a-2因式分解a^2-2a+a-2这步怎么得来的?接下怎么算? 2020-06-12 …
因式分解(a+2)(a-3)(a^2-7)+(2+a)(3-a)(a+5),求速度 2020-06-12 …
1.因式分解:a^2+b^2-2ab-ac+bc2.因式分解:x^2-2xy+y^2-3x+3y- 2020-07-03 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …