早教吧作业答案频道 -->数学-->
(2012•随州)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则(ab2+b2−3a+1a)5=.
题目详情
(2012•随州)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则(
)5=______.
ab2+b2−3a+1 |
a |
▼优质解答
答案和解析
∵a2+2a-1=0,b4-2b2-1=0,
∴(a2+2a-1)-(b4-2b2-1)=0,
化简之后得到:(a+b2)(a-b2+2)=0,
若a-b2+2=0,即b2=a+2,则1-ab2=1-a(a+2)=1-a2-2a=-(a2+2a-1),
∵a2+2a-1=0,
∴-(a2+2a-1)=0,与题设矛盾
∴a-b2+2≠0,
∴a+b2=0,即b2=-a,
∴(
)5
=(
)5
=-(
)5
=-(
)5
=-25
=-32.
故答案为-32.
解法二:
∵a2+2a-1=0,
∴a≠0,
∴两边都除以-a2,得
-
-1=0
又∵1-ab2≠0,
∴b2≠
而已知b4-2b2-1=0,
∴
和b2是一元二次方程x2-2x-1=0的两个不等实根
∴
+b2=2,
×b2=
=-1,
∴(ab2+b2-3a+1)÷a=b2+
-3+
=(b2+
)+
-3=2-1-3=-2,
∴原式=(-2)5=-32.
∴(a2+2a-1)-(b4-2b2-1)=0,
化简之后得到:(a+b2)(a-b2+2)=0,
若a-b2+2=0,即b2=a+2,则1-ab2=1-a(a+2)=1-a2-2a=-(a2+2a-1),
∵a2+2a-1=0,
∴-(a2+2a-1)=0,与题设矛盾
∴a-b2+2≠0,
∴a+b2=0,即b2=-a,
∴(
ab2+b2−3a+1 |
a |
=(
−a2−a −3a+1 |
a |
=-(
a2+2a+2a−1 |
a |
=-(
2a |
a |
=-25
=-32.
故答案为-32.
解法二:
∵a2+2a-1=0,
∴a≠0,
∴两边都除以-a2,得
1 |
a2 |
2 |
a |
又∵1-ab2≠0,
∴b2≠
1 |
a |
∴
1 |
a |
∴
1 |
a |
1 |
a |
b2 |
a |
∴(ab2+b2-3a+1)÷a=b2+
b2 |
a |
1 |
a |
1 |
a |
b2 |
a |
∴原式=(-2)5=-32.
看了 (2012•随州)设a2+2...的网友还看了以下:
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
1/2*101/100=101/200这一步是因为什么这么做的?原题是1-1/2^2)(1-1/3 2020-05-14 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
观察按下列规律排成的一列数:1\1,1\2,2\1,1\2,2\2,3\1,1\4,2\3,3\2 2020-06-25 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
必修I·指数函数部分化简[1+2^(1/8)][1+2^(1/4)][1+2^(1/2)]快+好者 2020-08-02 …
设R^3中的一组基ξ1=(1,-2,1)T,ξ2=(0,1,1)T,ξ3=(3,2,1)T,向量α在 2020-11-02 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …
观察下列等式①1/√2+1=√2-1/(√2+1)(√2-1)=-1+√2②1/√3+√2=√3-√ 2020-12-07 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …