早教吧作业答案频道 -->数学-->
如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
题目详情
如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠B+∠C=180°,∠AEB=∠DAE,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,∴BE=CD;
(2) ∵AB=BE,∠BEA=60°,
∴△ABE是等边三角形,
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF=
=
=2
,
∵AD∥BC,
∴∠D=∠ECF,∠DAF=∠E,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴△ADF的面积=△ECF的面积,
∴平行四边形ABCD的面积=△ABE的面积=
AE•BF=
×4×2
=4
.
∴AD∥BC,AB∥CD,AB=CD,
∴∠B+∠C=180°,∠AEB=∠DAE,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,∴BE=CD;
(2) ∵AB=BE,∠BEA=60°,
∴△ABE是等边三角形,
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF=
AB2-AF2 |
42-22 |
3 |
∵AD∥BC,
∴∠D=∠ECF,∠DAF=∠E,
在△ADF和△ECF中,
|
∴△ADF≌△ECF(AAS),
∴△ADF的面积=△ECF的面积,
∴平行四边形ABCD的面积=△ABE的面积=
1 |
2 |
1 |
2 |
3 |
3 |
看了 如图,四边形ABCD为平行四...的网友还看了以下:
关于平行四边形的问题1.如图,在平行四边形ABCD中,E,F分别是DC,BA延长线上的点,且AF∥C 2020-03-30 …
如图,在平行四边形ABCD中,E、F分别位于边AB、CD上,EF∥AD,于是EF将平行四边形ABC 2020-05-15 …
在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.⑴求证:AB=CF; 2020-05-16 …
在平行四边形ABCD中,E,F分别是AB,CD上的点,AE=CF,M,N分别是DE,BF的中点求证 2020-05-16 …
如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结 AE、BE、BD,且AE与 2020-05-16 …
初中平行四边形习题在三角行ABC中,角BCA=90`,点D,E分别是AC,AB边的中点.点F在BC 2020-05-21 …
在等边三角形ABC中,AB=8,点D在边BC上,三角形ADE为等边三角形,且点E与点D在直线AC的 2020-06-12 …
1.在平行四边形ABCD中,E、F分别是AC上的两点,且BE⊥AC于E,DF⊥AC于F,证BE=D 2020-06-18 …
已知:如图,点E、F分别是平行四边形ABCD的边AD、BC的中点,且AD=2AB,分别联结AF、DF 2020-12-07 …
如图所示,△ABC是等腰三角形,E点在底边AB上,由A点向B点移动(不包括A、B两点),D、F分别在 2020-12-25 …