早教吧作业答案频道 -->数学-->
)若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
题目详情
)
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
▼优质解答
答案和解析
连接F1Q,则:由等腰直角△F1PQ得:
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
看了 )若F1F2为椭圆两个焦点,...的网友还看了以下:
斜率为1比2的一条直线与椭圆交于A、B两点,已知点A坐标为(2,3)且椭圆的右焦点F2到直线AB的 2020-05-13 …
已知椭圆M:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为2√2/3,且椭圆上一点与椭 2020-05-14 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)离心率是1/2,且椭圆上的店到焦点的距离最小是 2020-05-15 …
1.椭圆c的焦点在x轴上,焦距为2,直线l:x-y-1=0与椭圆c交于A、B两点,F1是左焦点且F 2020-05-15 …
已知椭圆E:x2a2+y2b2=1(a>b>0)的焦距为2,且椭圆短轴的两个三等分点与一个焦点构成 2020-05-15 …
椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求求 2020-05-23 …
已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量 2020-07-24 …
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,OA+ 2020-07-24 …
已知椭圆C:x^2/a^2+y^2/b^2=1的离心率e=1/2,且椭圆经过点N(2,-3).求椭 2020-08-01 …
高中数学已知椭圆C的左、右焦点分别为F1,F2,椭圆的离心率为1/2,且椭圆C经过点P(1,3/2) 2021-01-13 …