早教吧作业答案频道 -->数学-->
)若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
题目详情
)
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
▼优质解答
答案和解析
连接F1Q,则:由等腰直角△F1PQ得:
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
看了 )若F1F2为椭圆两个焦点,...的网友还看了以下:
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,以原点O为圆心椭圆的 2020-05-22 …
已知一个圆被一条直线分割成两部分,直线在圆内的长度为35,直线中心到圆的高为6,求被分割的那个小部 2020-05-22 …
如图,两个圆都以点O为圆心,大圆的弦AB交小圆于点C,D,已知AB=2CD,点O到AB的距离等于C 2020-06-04 …
大小两个圆心,大圆的面积是小圆的面积的2倍,若大小2个圆的半径分别为R,r,求R÷r的值是多少? 2020-06-06 …
弯曲带电棒问题一具有均匀负电荷分布-Q的塑料杆被弯成半径为R的圆弧,其圆心角为120度.若以无穷远 2020-06-19 …
斜椭圆的几何中心椭圆的一般方程Ax^2BxyCy^2DxEy1=0的几何中心坐标用A,B,C,D, 2020-06-20 …
已知椭圆C:x²/a²+y²/b²=1a>b>0,以原点为圆心,椭圆的短半轴为半径的园与直线椭圆离 2020-06-21 …
关于一个椭圆的题目!已知椭圆C以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为(1,0)点 2020-06-21 …
已知椭圆c:x2/a2+y2/b2=1(a>b>0)的离心率为根号3分之2,以原点为圆心,椭圆的短 2020-06-30 …
点电荷q位于一个圆的轴线上,距离圆心d,圆的半径R.通过此圆平面上的E通量是多少q(R-d)/(2 2020-07-26 …