早教吧作业答案频道 -->数学-->
)若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
题目详情
)
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
▼优质解答
答案和解析
连接F1Q,则:由等腰直角△F1PQ得:
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
看了 )若F1F2为椭圆两个焦点,...的网友还看了以下:
如图,已知椭圆,F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.( 2020-05-15 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)F1、F2分别为椭圆的左右焦点,A为椭圆的 2020-05-15 …
求下列的园的方程 1 圆心为(0,-3),过电(3,1) 2 圆心为坐标原点,且与直线4X+2Y_ 2020-05-16 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,直线x=2被椭圆E截 2020-05-16 …
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的焦距为4,A(2,√2)是椭圆C上的 2020-06-21 …
滑车的四个轮子是滚珠轴承,滚珠轴承的内外圆半径之比为1:2,圆心为O,两个相切的滚珠的球心分别为P 2020-07-06 …
直线根号3ax+by=1与圆x2+y2=2交于A,B两点rt△AOB(O是原点)点p(a,b)与点 2020-07-18 …
已知点p(4,4),椭圆Ex^2/18+y^2/2=1椭圆上点A(3,1)F1,F2分别是椭圆的左 2020-07-25 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …
求下列条件的圆的标准方程,要带方法和简便方法哦~1以P1[4,9和P26,3为直径的两端点2圆心为 2020-08-02 …