早教吧作业答案频道 -->数学-->
椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求求椭圆方程椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求椭圆方程‘过点(-6/5,0),
题目详情
椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求求椭圆方程
椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求椭圆方程‘过点(-6/5,0),作不与Y轴垂直的直线L交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否是一个定值,并说明理由
椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求椭圆方程‘过点(-6/5,0),作不与Y轴垂直的直线L交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否是一个定值,并说明理由
▼优质解答
答案和解析
c=√3,设椭圆方程为x^2/(b^2+3)+y^2/b^2=1,
它过点(1,-√3/2),
∴1/(b^2+3)+(3/4)/b^2=1,
4b^2+3(b^2+3)=4b^2(b^2+3),
4b^4+5b^2-9=0,
(b^2-1)(4b^2+9)=0,
解得b^2=1,椭圆方程为x^2/4+y^2=1.左顶点A(-2,0).
设L:x=my-6/5,①
代入椭圆方程得(m^2+4)y^2-(12/5)my-64/25=0,
设M(x1,y1),N(x2,y2),则
y1+y2=(12/5)m/(m^2+4),y1y2=(-64/25)/(m^2+4).
由①,(x1+2)(x2+2)=(my1+4/5)(my2+4/5)=m^2y1y2+(4/5)m(y1+y2)+16/25,
(x1+2)(x2+2)+y1y2=(m^2+1)y1y2+(4/5)m(y1+y2)+16/25
=[(-64/25)(m^2+1)+(48/25)m^2+(16/25)(m^2+4)]/(m^2+4)
=0
∴1+k1k2=[(x1+2)(x2+2)+y1y2]/(x1+2)(x2+2)=0,
∴AM⊥AN,∠MAN=90°.
它过点(1,-√3/2),
∴1/(b^2+3)+(3/4)/b^2=1,
4b^2+3(b^2+3)=4b^2(b^2+3),
4b^4+5b^2-9=0,
(b^2-1)(4b^2+9)=0,
解得b^2=1,椭圆方程为x^2/4+y^2=1.左顶点A(-2,0).
设L:x=my-6/5,①
代入椭圆方程得(m^2+4)y^2-(12/5)my-64/25=0,
设M(x1,y1),N(x2,y2),则
y1+y2=(12/5)m/(m^2+4),y1y2=(-64/25)/(m^2+4).
由①,(x1+2)(x2+2)=(my1+4/5)(my2+4/5)=m^2y1y2+(4/5)m(y1+y2)+16/25,
(x1+2)(x2+2)+y1y2=(m^2+1)y1y2+(4/5)m(y1+y2)+16/25
=[(-64/25)(m^2+1)+(48/25)m^2+(16/25)(m^2+4)]/(m^2+4)
=0
∴1+k1k2=[(x1+2)(x2+2)+y1y2]/(x1+2)(x2+2)=0,
∴AM⊥AN,∠MAN=90°.
看了 椭圆有两焦点坐标分别为F1负...的网友还看了以下:
两顶点间距离是6焦点坐标是f(0.-5)f2(0.5)则双曲线的标准方程为 2020-05-13 …
已知椭圆的中心在坐标原点,离心率为1/2,一个焦点是F(0,1).1、求椭圆方程2、直线l过点F交 2020-05-16 …
圆的标准方程与圆的一般式的转换额 貌似我忘记了 标准式是怎么转换成一般式的?(x-a)^2+(y- 2020-05-16 …
在平面直角坐标系中,抛物线y=-x^2+bx+c的对称轴为直线x=3/2,与坐标轴交于A、B、C三 2020-06-10 …
怎么求椭圆的焦点坐标?假如我已经知道某椭圆的方程为:AX^2+BXY+CY^2+DX+EY+F=0 2020-06-21 …
高二椭圆的问题已知椭圆的中心是坐标原点O,它的短轴长为2倍根号2,一个焦点F的坐标为(c,0)(c 2020-07-21 …
若半径为r的圆C,x^2+y^2+Dx+Ey+F=0,的圆心C到直线l:Dx+Ey+F=0的距离为 2020-07-26 …
已知圆A的圆心A的坐标是(3,0),圆A的半径为5,点BCDEFG的坐标分别是B(0,-4),C( 2020-08-01 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,离心率是1/2,过F作直线l交椭 2020-08-01 …
根据ax2+bxy+cy2+dx+ey+f=0怎样求圆/椭圆的圆心和半经如果是用旋转坐标系来解决,那 2020-12-25 …