早教吧作业答案频道 -->数学-->
在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)求证:EF2+BF2=2AC2.
题目详情
在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.

(1)若∠BAC=40°,求∠AEB的度数;
(2)求证:∠AEB=∠ACF;
(3)求证:EF2+BF2=2AC2.

(1)若∠BAC=40°,求∠AEB的度数;
(2)求证:∠AEB=∠ACF;
(3)求证:EF2+BF2=2AC2.
▼优质解答
答案和解析
(1) ∵AB=AC,△ACE是等腰直角三角形,
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAC=40°,∠EAC=90°,
∴∠BAE=40°+90°=130°,
∴∠AEB=(180°-130°)÷2=25°;
(2)证明:∵AB=AC,D是BC的中点,
∴∠BAF=∠CAF.
在△BAF和△CAF中
∴△BAF≌△CAF(SAS),
∴∠ABF=∠ACF,
∵∠ABE=∠AEB,
∴∠AEB=∠ACF;
(3)证明:∵△BAF≌△CAF,
∴BF=CF,
∵∠AEB=∠ACF,∠AGE=∠FGC,
∴∠CFG=∠EAG=90°,
∴EF2+BF2=EF2+CF2=EC2,
∵△ACE是等腰直角三角形,
∴∠CAE=90°,AC=AE,
∴EC2=AC2+AE2=2AC2,
即EF2+BF2=2AC2.
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAC=40°,∠EAC=90°,
∴∠BAE=40°+90°=130°,
∴∠AEB=(180°-130°)÷2=25°;
(2)证明:∵AB=AC,D是BC的中点,
∴∠BAF=∠CAF.
在△BAF和△CAF中
|
∴△BAF≌△CAF(SAS),
∴∠ABF=∠ACF,
∵∠ABE=∠AEB,
∴∠AEB=∠ACF;
(3)证明:∵△BAF≌△CAF,
∴BF=CF,
∵∠AEB=∠ACF,∠AGE=∠FGC,
∴∠CFG=∠EAG=90°,
∴EF2+BF2=EF2+CF2=EC2,
∵△ACE是等腰直角三角形,
∴∠CAE=90°,AC=AE,
∴EC2=AC2+AE2=2AC2,
即EF2+BF2=2AC2.
看了 在△ABC中,AB=AC,D...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
已知函数f(x)=sin(x−π2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为 2020-04-12 …
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=·(+ 2020-05-15 …
根据下列条件求二次函数解析式(1)若抛物线Y=(M^2-2)X^2-4MX+N的对称轴是直线X=2 2020-06-06 …
已知函数y=ax²+c过点(-2,-3)和点(1,6)求这个函数的解析式当x取何值时,函数y随x增 2020-06-14 …
在平面直角坐标系xoy中,抛物线y=ax2bxc过点(2,2),且当x=0时y取得最小值1在平面直 2020-06-17 …
已知ABC中,点A,B的坐标分别为(-√2,0)(√2,0)点C在X轴上方若点C坐标(√2,1), 2020-06-21 …
阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是A,B的好 2020-07-30 …
阅读理若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是A,B的妙点. 2020-07-30 …
中心在坐标原点的椭圆c过点(2,(2√3)/2)右焦点为(√7,0)求方程 2020-08-02 …