早教吧作业答案频道 -->数学-->
已知定义域为R的函数f(x)满足1、f(x)+f(x+2)=2x的平方-4x+22、f(x+1)-f(t-1),-1/2,f(t)成等差数列,则t的值为
题目详情
已知定义域为R的函数f(x)满足 1、 f(x)+f(x+2)=2x的平方-4x+2 2、f(x+1)-f(t-1),-1/2,f(t)成等差数列,则t的值为
▼优质解答
答案和解析
令f(x)=ax^2+bx+c,
则f(x+2)=a(x+2)^2+b(x+2)+c=ax^2+(4a+b)x+(4a+2b+c)
所以f(x)+f(x+2)=ax^2+bx+c+ax^2+(4a+b)x+(4a+2b+c)=2ax^2+(4a+2b)x+(4a+2b+2c)=2x^2-4x+2
对应项系数相等
解得a=1,b=-4,c=3
所以f(x)=x^2-4x+3;f(t+1)=t^2-2t;f(t-1)=t^2-6t+8;
因为f(t+1)-f(t-1),-1/2,f(t)成等差数列
所以f(t+1)-f(t-1)+f(t)=-1
即t^2-2t-(t^2-6t+8)+t^2-4t+3=-1
整理得t^2-4=0
所以t=2或-2
题目中第2条f(x+1)-f(t-1),-1/2,f(t)成等差数列应该是f(t+1)而不是f(x+1)吧
则f(x+2)=a(x+2)^2+b(x+2)+c=ax^2+(4a+b)x+(4a+2b+c)
所以f(x)+f(x+2)=ax^2+bx+c+ax^2+(4a+b)x+(4a+2b+c)=2ax^2+(4a+2b)x+(4a+2b+2c)=2x^2-4x+2
对应项系数相等
解得a=1,b=-4,c=3
所以f(x)=x^2-4x+3;f(t+1)=t^2-2t;f(t-1)=t^2-6t+8;
因为f(t+1)-f(t-1),-1/2,f(t)成等差数列
所以f(t+1)-f(t-1)+f(t)=-1
即t^2-2t-(t^2-6t+8)+t^2-4t+3=-1
整理得t^2-4=0
所以t=2或-2
题目中第2条f(x+1)-f(t-1),-1/2,f(t)成等差数列应该是f(t+1)而不是f(x+1)吧
看了 已知定义域为R的函数f(x)...的网友还看了以下:
已知定义域为R的函数f(x)满足1、f(x)+f(x+2)=2x的平方-4x+22、f(x+1)- 2020-04-27 …
高中数学问题,求解答F(X)是以T为周期的函数,则函数F(x)+F(2x)+F(3x)+F(4x) 2020-05-17 …
看一道函数解答题(超简单的)已知f(x+1)=x^2+2x,求f(x)令x+1=t,则t=x-1所 2020-06-06 …
f(x+2)为奇函数,那么f(x+2)=-f(-x+2)?为什么呢?为什么不等于-f(-x-2)? 2020-06-09 …
已知f(x-1)=x^2-4x,求函数f(x),f(2x+1)的解析式令t=x-1,则有:x=t+ 2020-06-17 …
对任意的正数s,t,有下列4个关系式:①f(s+t)=f(s)+f(t);②f(s+t)=f(s) 2020-07-20 …
若f(x+a)是偶函数.则另t=x+a则f(t)是偶函数,则f(t)=f(-t)则f(x+a)=f 2020-08-01 …
函数f(x)定义域为I,存在非零常数T,对于任意的x∈I,都有f(x+T)=-f(x),则f(x)是 2020-12-07 …
1.集合U={1,5}为全集,S包含于U,T包含于U,S交T={2},S的补集交T={4},S的补集 2020-12-08 …
一道函数题f(1/x)=x²+1/x+1则f'(1)=(-1)分析令1/x=t则t=1/x,可得f( 2021-01-07 …