早教吧作业答案频道 -->数学-->
周期性函数递推设数列{an}满足a1=a2=1,a3=2,且对任意正整数n都有an*an+1*an+2≠1,又an*an+1*an+2*an+3=an+an+1+an+2+an+3,求a1+a2+…a100
题目详情
周期性函数递推
设数列{an}满足a1=a2=1,a3=2,且对任意正整数n都有an*an+1*an+2≠1,又an*an+1*an+2*an+3=an+an+1+an+2+an+3,求a1+a2+…a100
设数列{an}满足a1=a2=1,a3=2,且对任意正整数n都有an*an+1*an+2≠1,又an*an+1*an+2*an+3=an+an+1+an+2+an+3,求a1+a2+…a100
▼优质解答
答案和解析
an*a(n+1)*a(n+2)*a(n+3)=an+a(n+1)+a(n+2)+a(n+3)
a(n+1)*a(n+2)*a(n+3)*a(n+4)=a(n+1)+a(n+2)+a(n+3)+a(n+4)
a(n+4)/an=[an+a(n+1)+a(n+2)+a(n+3)]/[an+a(n+1)+a(n+2)+a(n+3)]
[a(n+4)-an][a(n+1)+a(n+2)+a(n+3)]=0
∵a1+a2+a3=4
∴a(n+1)+a(n+2)+a(n+3)≠0
a(n+4)=an
1*1*2*a4=1+1+2+a4
a4=4
a5=a1,a6=a2,a7=a3a8=a4,...
a1+a2+…a100=25*(a1+a2+a3+a4)=200
a(n+1)*a(n+2)*a(n+3)*a(n+4)=a(n+1)+a(n+2)+a(n+3)+a(n+4)
a(n+4)/an=[an+a(n+1)+a(n+2)+a(n+3)]/[an+a(n+1)+a(n+2)+a(n+3)]
[a(n+4)-an][a(n+1)+a(n+2)+a(n+3)]=0
∵a1+a2+a3=4
∴a(n+1)+a(n+2)+a(n+3)≠0
a(n+4)=an
1*1*2*a4=1+1+2+a4
a4=4
a5=a1,a6=a2,a7=a3a8=a4,...
a1+a2+…a100=25*(a1+a2+a3+a4)=200
看了 周期性函数递推设数列{an}...的网友还看了以下:
已知数列{an}的前4项分别为2,0,2,0,则下列各式不可以作为数列{an}的通项公式的一项是( 2020-04-09 …
设数列{an}满足a1=a,an+1=can+1-c,n∈N*其中a,c为实数,且c≠0,a≠1, 2020-05-13 …
已知数列{an}满足a1=a,an+1=(2|sinnπ2|-1)an+2n.(Ⅰ)请写出a2,a 2020-07-09 …
已知函数f(x)=2+1x.数列{an}中,a1=a,an+1=f(an)(n∈N*).当a取不同 2020-07-18 …
设an=(n+1)2,bn=n2-n(n∈N*),则下列命题中不正确的是()A.{an+1-an} 2020-07-23 …
已知数列{an}满足a1=a,an+1=2an+λan,(a,λ∈R)(Ⅰ)若λ=-2,数列{an 2020-07-26 …
在用数学归纳法证明1+a+a2+…+an+1=1-an+21-a(a≠1,n∈N*)时,在验证当n 2020-08-01 …
用数学归纳法证明1+a+a2+…+an+1=1-an+21-a(a≠0,1,n∈N*),在验证n= 2020-08-01 …
(2010•南通模拟)设数列{an}满足a1=a,an+1=an2+a1,M={a∈R|n∈N*,| 2020-11-12 …
对一类数列的疑问对于A(an+1)+B(an)=C(an+1)(an)+D的一类数列有没有通式通法? 2020-12-17 …