早教吧作业答案频道 -->其他-->
已知数列{an}满足a1=a,an+1=2an+λan,(a,λ∈R)(Ⅰ)若λ=-2,数列{an}单调递增,求实数a的取值范围;(Ⅱ)若a=2,试写出an≥2对任意n∈N*成立的充要条件,并证明你的结论.
题目详情
已知数列{an}满足a1=a,an+1=2an+
,(a,λ∈R)
(Ⅰ)若λ=-2,数列{an}单调递增,求实数a的取值范围;
(Ⅱ)若a=2,试写出an≥2对任意n∈N*成立的充要条件,并证明你的结论.
λ |
an |
(Ⅰ)若λ=-2,数列{an}单调递增,求实数a的取值范围;
(Ⅱ)若a=2,试写出an≥2对任意n∈N*成立的充要条件,并证明你的结论.
▼优质解答
答案和解析
(Ⅰ)若λ=-2,则an+1=2an-
,
∵an+1>an,∴an+1-an>0,
∴an-
>0,
即
>0,
∴an>
或-
<an<0,
∴只需a1>
或-
<a1<0;
∴实数a的取值范围是(-
,0)∪(
,+∞).
(Ⅱ) an≥2对任意n∈N*成立的充要条件为λ≥-4.
必要性:假设an+1=2an+
≥2,得λ≥-2an2+2an,
令f(n)=-2(an−
)2+
,an≥2,
∴f(n)max=-4,即λ≥-4.
充分性:用数学归纳法证明λ≥-4时,对一切n∈N*,an≥2成立.
证明:(1)显然n=1时,结论成立;
(2)假设n=k(k≥1)时结论成立,即ak≥2,
当n=k+1时,ak+1=2ak+
.
考察函数f(x)=2x+
,x∈[2,+∞),
①若-4≤λ≤0,由f′(x)=2-
>0,知f(x)在区间[2,+∞)上单调递增.由假设得ak+1=2ak+
≥4+
≥2.
②若λ>0,对x∈[2,+∞)总有f(x)=2x+
>4>2,
则由假设得ak+1=2ak+
>2;
所以,n=k+1时,结论成立,
综上可知:当λ≥-4时,对一切n∈N*,an≥2成立.
所以,an≥2对任意n∈N*成立的充要条件是λ≥-4.
2 |
an |
∵an+1>an,∴an+1-an>0,
∴an-
2 |
an |
即
an2−2 |
an |
∴an>
2 |
2 |
∴只需a1>
2 |
2 |
∴实数a的取值范围是(-
2 |
2 |
(Ⅱ) an≥2对任意n∈N*成立的充要条件为λ≥-4.
必要性:假设an+1=2an+
λ |
an |
令f(n)=-2(an−
1 |
2 |
1 |
2 |
∴f(n)max=-4,即λ≥-4.
充分性:用数学归纳法证明λ≥-4时,对一切n∈N*,an≥2成立.
证明:(1)显然n=1时,结论成立;
(2)假设n=k(k≥1)时结论成立,即ak≥2,
当n=k+1时,ak+1=2ak+
λ |
ak |
考察函数f(x)=2x+
λ |
x |
①若-4≤λ≤0,由f′(x)=2-
λ |
x2 |
λ |
ak |
λ |
2 |
②若λ>0,对x∈[2,+∞)总有f(x)=2x+
λ |
x |
则由假设得ak+1=2ak+
λ |
ak |
所以,n=k+1时,结论成立,
综上可知:当λ≥-4时,对一切n∈N*,an≥2成立.
所以,an≥2对任意n∈N*成立的充要条件是λ≥-4.
看了 已知数列{an}满足a1=a...的网友还看了以下:
设A为n(n大于等于3)阶方阵则对任何常数a都有(aA)*=aA*其中A*为A的伴随矩阵这设A为n 2020-04-13 …
(2013•崇明县一模)已知数列{an},记A(n)=a1+a2+a3+…+an,B(n)=a2+ 2020-05-17 …
等比数列{an}的前n项和为Sn,已知对任意n∈N+,点(n,Sn)均在函数y=(b的x次方)+r 2020-06-07 …
假设A是n阶方阵,其秩r<n,那么在A的n个行向量中()A.必有r个行向量线性无关B.任意r个行向 2020-06-20 …
已知{an}是首项为a,公差为1的等差数列,bn=1+anan.若对任意的n∈N*,都有bn≤b8 2020-07-09 …
已知数列{an}的各项均为正数,Sn为、为其前n项和,对于任意的n∈N*满足关系式2Sn=3an- 2020-07-30 …
若无穷数列{an}满足:①对任意n属于正整数,{a(n)+a(n+2)}/2≤a(n+1);②存在 2020-08-02 …
懂数论的近来!一道数论题目:n是任意正整数,a是实数,证:[a]+[a+1/n]+.+[a+n-1/ 2020-11-06 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …
数列{an}是等比数列,则下列结论中正确的是()A.对任意k∈N*,都有akak+1>0B.对任意k 2020-12-23 …