早教吧作业答案频道 -->数学-->
解一道贝努利方程y'+y=y^4(cosx-sinx)看不清楚,能发个大点的吗?
题目详情
解一道贝努利方程
y'+y=y^4(cosx-sinx)
看不清楚,能发个大点的吗?
y'+y=y^4(cosx-sinx)
看不清楚,能发个大点的吗?
▼优质解答
答案和解析
y'+y=y^4(cosx-sinx)
y'/y^4+y/y^4=cosx-sinx
(-1/3)d(1/y^3)/dx+(1/y^3)=cosx-sinx
d(1/y^3)/dx-3(1/y^3)=3(sinx-cosx)
d(1/y^3)/dx-3(1/y^3)=0
1/y^3=Ce^3x
设方程通解(1/y^3)=C(x)e^3x
C'(x)e^3x=3(sinx-cosx)
C'(x)=3√2sin(x-π/4)e^(-3x)
C(x)=(-9√2/10)e^(-3x)[sin(x-π/4)+(1/3)cos(x-π/4)]+C
通解为1/y^3=(-9√2/10)*[sin(x-π/4)+(1/3)cos(x-π/4)]+Ce^3x
∫sin(x-π/4)e^(-3x)dx=(-1/3)∫sin(x-π/4)de^(-x)=(-1/3)e^(-3x)sin(x-π/4)+(1/3)∫e^(-3x)cos(x-π/4)dx
=(-1/3)e^(-3x)sin(x-π/4)-(1/9)∫cos(x-π/4)de^(-3x)
=(-1/3)e^(-3x)sin(x-π/4)+(-1/9)e^(-3x)cos(x-π/4)-(1/9)∫e^(-3x)sin(x-π/4)dx+C1
(10/9)∫sin(x-π/4)e^(-3x)dx=(-1/3)e^(-x)*[-sin(x-π/4)-(1/3)cos(x-π/4)]+C1
∫sin(x-π/4)e^(-x)dx=(-3/10)e^(-x) *[sin(x-π/4)+(1/3)cos(x-π/4)]+C
y'/y^4+y/y^4=cosx-sinx
(-1/3)d(1/y^3)/dx+(1/y^3)=cosx-sinx
d(1/y^3)/dx-3(1/y^3)=3(sinx-cosx)
d(1/y^3)/dx-3(1/y^3)=0
1/y^3=Ce^3x
设方程通解(1/y^3)=C(x)e^3x
C'(x)e^3x=3(sinx-cosx)
C'(x)=3√2sin(x-π/4)e^(-3x)
C(x)=(-9√2/10)e^(-3x)[sin(x-π/4)+(1/3)cos(x-π/4)]+C
通解为1/y^3=(-9√2/10)*[sin(x-π/4)+(1/3)cos(x-π/4)]+Ce^3x
∫sin(x-π/4)e^(-3x)dx=(-1/3)∫sin(x-π/4)de^(-x)=(-1/3)e^(-3x)sin(x-π/4)+(1/3)∫e^(-3x)cos(x-π/4)dx
=(-1/3)e^(-3x)sin(x-π/4)-(1/9)∫cos(x-π/4)de^(-3x)
=(-1/3)e^(-3x)sin(x-π/4)+(-1/9)e^(-3x)cos(x-π/4)-(1/9)∫e^(-3x)sin(x-π/4)dx+C1
(10/9)∫sin(x-π/4)e^(-3x)dx=(-1/3)e^(-x)*[-sin(x-π/4)-(1/3)cos(x-π/4)]+C1
∫sin(x-π/4)e^(-x)dx=(-3/10)e^(-x) *[sin(x-π/4)+(1/3)cos(x-π/4)]+C
看了 解一道贝努利方程y'+y=y...的网友还看了以下:
1.M,N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为2.曲线y 2020-05-16 …
我这里有两个变式是由cos²X+sin²X=1得来的但我人比较笨不知道是怎样转化来的变式①:1+c 2020-05-19 …
函数f(x)=sinx+2丨sinx丨,x属于0,2π的图像与直线y=k有切仅有两个不同交点,则K 2020-06-03 …
已知平面直角坐标系中,点O为坐标原点,点A(sinx,1),B(cosx,0),C(-sinx,2 2020-06-14 …
求极限的时候形如(A+B)/C,什么时候能拆成A/C+B/C的形式呢为什么x趋近于0时,{ln(1 2020-06-22 …
判断方程x+sinx=0的根的个数,为什么图像y=sinx,与y=-x的交点个数便是根的个数啊 2020-06-27 …
阐述一下《孙子兵法》和《孙膑兵法》的内容、结构等方面的共同点个不同点.它们的影响力又如何. 2020-07-25 …
已知sinx+cosx=m在[0,π]内有且只有两个不同的解α、β,求实数m的取值范围,并求α+β 2020-07-26 …
三角函数问题⑴5-4(sinx)^2+4(sinx)^4的最小正周期与最大值分别是多少⑵f(x)= 2020-08-03 …
用红、蓝、黄三种颜色涂右下图中的小圆圈,要求每个圆圈只能涂一种颜色,每个三角形三个顶点个不同,三角形 2020-12-10 …