早教吧作业答案频道 -->其他-->
定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f(x1+x22)≤12[f(x1)+f(x2)],则称f(x)是R上凹函数.已知二次函数f(x)=ax2+x(a∈R,且a≠0).(1)求证:当a>0时,函数f(x)的凹函数
题目详情
定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f(
)≤
[f(x1)+f(x2)],则称f(x)是R上凹函数.已知二次函数f(x)=ax2+x(a∈R,且a≠0).
(1)求证:当a>0时,函数f(x)的凹函数;
(2)如果x∈[0,1]时,|f(x)|≤1,试求a的取值范围.
x1+x2 |
2 |
1 |
2 |
(1)求证:当a>0时,函数f(x)的凹函数;
(2)如果x∈[0,1]时,|f(x)|≤1,试求a的取值范围.
▼优质解答
答案和解析
(1)证明:∵二次函数f(x)=ax2+x
∴任取x1,x2∈R,则f(
)−
[f(x1)+f(x2)]=a(
)2+
-
(a
+x1+a
+x2)=-
a(x1−x2)2
∵a>0,(x1−x2)2≥0,∴
a(x1−x2)2≥0
∴f(
)−
[f(x1)+f(x2)]≤0
∴f(
)≤
[f(x1)+f(x2)]
∴当a>0时,函数f(x)的凹函数;
(2)由-1≤f(x)=ax2+x≤1,则有ax2≥-x-1且ax2≤-x+1.
(i)若x=0时,则a∈R恒成立,
(ii)若x∈(0,1]时,有 a≥-
-
且a≤-
+
∴a≥-
-
∴任取x1,x2∈R,则f(
x1+x2 |
2 |
1 |
2 |
x1+x2 |
2 |
x1+x2 |
2 |
1 |
2 |
x | 2 1 |
x | 2 2 |
1 |
2 |
∵a>0,(x1−x2)2≥0,∴
1 |
2 |
∴f(
x1+x2 |
2 |
1 |
2 |
∴f(
x1+x2 |
2 |
1 |
2 |
∴当a>0时,函数f(x)的凹函数;
(2)由-1≤f(x)=ax2+x≤1,则有ax2≥-x-1且ax2≤-x+1.
(i)若x=0时,则a∈R恒成立,
(ii)若x∈(0,1]时,有 a≥-
1 |
x |
1 |
x2 |
1 |
x |
1 |
x2 |
∴a≥-
1 |
x |
1 |
<
|
看了 定义在R上的函数f(x)满足...的网友还看了以下:
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1) 2020-05-19 …
若函数f(x)在x=a处的导函数值为A(aA不等于0),函数F(x)=f(x)-A^2x^2满足F 2020-05-21 …
关于导数的一个疑惑F(X)=|X|,那么F(X)为偶函数,所以F(X)的导数为奇函数,又因为F(X 2020-06-10 …
设函数f(x)=a1sin(x+a1)+a2sin(x+a2)+.+ansin(x+an),其中a 2020-07-18 …
已知(fx)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数的解析式已知 2020-07-21 …
写出下列函数的解析表达式.1.设函数y=f(x),当x<0时,f(x)=0;当x≧0时,f(x)= 2020-08-03 …
待解决设函数f(x)在x=0处可导,且f(0)=0,求下列极限设函数f(x)在x=0处可导,且f待解 2020-11-03 …
设函数f(x)={2^xx>0,x+1x小于等于0.若f(a)+f(1)=0,则实数a的值等于?1设 2020-12-08 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …