早教吧作业答案频道 -->数学-->
设函数f(x)=x|x|+bx+c,给出下列四个命题:①当x>0时,f(x)是增函数;②f(x)的图象关于(0,c)对称;③当b≠0时,方程f(x)=0必有三个实数根;④当b=0时,方程f(x)=0有且只有一个
题目详情
设函数f(x)=x|x|+bx+c,给出下列四个命题:
①当x>0时,f(x)是增函数;
②f(x)的图象关于(0,c)对称;
③当b≠0时,方程f(x)=0必有三个实数根;
④当b=0时,方程f(x)=0有且只有一个实根.
其中正确的命题是___(填序号)
①当x>0时,f(x)是增函数;
②f(x)的图象关于(0,c)对称;
③当b≠0时,方程f(x)=0必有三个实数根;
④当b=0时,方程f(x)=0有且只有一个实根.
其中正确的命题是___(填序号)
▼优质解答
答案和解析
f(x)=x|x|+bx+c=
,
①当x>0时,f(x)=x2+bx+c的图象是开口向上的抛物线,当-
≤0时f(x)才是增函数,故不正确;
②由f(x)的解析式可知c=0时,f(x)=-f(-x),其图象关于原点对称,
∵f(x)=x|x|+bx+c的图象由y=x|x|+bx向上或向下平移|c|个单位,
∴f(x)的图象关于(0,c)对称,故正确;
③当b≠0时,令b=1、c=0,则方程f(x)=0,
即x|x|+x=0,解得:x=0,故不正确;
④当b=0时,方程f(x)=0,
即x|x|+c=0,
(i)若c<0,
当x≤0时,即x2=c,此时无解;
当x>0时,即x2=-c,此时x=-
;
(ii)若c≥0,
当x≤0时,即x2=c,此时x=-
;
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
-x2+bx+c, x≤0 x2+bx+c, x>0 -x2+bx+c, x≤0 -x2+bx+c, -x2+bx+c,2+bx+c,x≤0 x≤0x2+bx+c, x>0 x2+bx+c, x2+bx+c,2+bx+c,x>0 x>0 ,
①当x>0时,f(x)=x22+bx+c的图象是开口向上的抛物线,当-
≤0时f(x)才是增函数,故不正确;
②由f(x)的解析式可知c=0时,f(x)=-f(-x),其图象关于原点对称,
∵f(x)=x|x|+bx+c的图象由y=x|x|+bx向上或向下平移|c|个单位,
∴f(x)的图象关于(0,c)对称,故正确;
③当b≠0时,令b=1、c=0,则方程f(x)=0,
即x|x|+x=0,解得:x=0,故不正确;
④当b=0时,方程f(x)=0,
即x|x|+c=0,
(i)若c<0,
当x≤0时,即x2=c,此时无解;
当x>0时,即x2=-c,此时x=-
;
(ii)若c≥0,
当x≤0时,即x2=c,此时x=-
;
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
b 2 b b b2 2 2≤0时f(x)才是增函数,故不正确;
②由f(x)的解析式可知c=0时,f(x)=-f(-x),其图象关于原点对称,
∵f(x)=x|x|+bx+c的图象由y=x|x|+bx向上或向下平移|c|个单位,
∴f(x)的图象关于(0,c)对称,故正确;
③当b≠0时,令b=1、c=0,则方程f(x)=0,
即x|x|+x=0,解得:x=0,故不正确;
④当b=0时,方程f(x)=0,
即x|x|+c=0,
(i)若c<0,
当x≤0时,即x22=c,此时无解;
当x>0时,即x22=-c,此时x=-
;
(ii)若c≥0,
当x≤0时,即x2=c,此时x=-
;
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
-c -c -c -c;
(ii)若c≥0,
当x≤0时,即x22=c,此时x=-
;
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
c c c c;
当x>0时,即x22=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
|
①当x>0时,f(x)=x2+bx+c的图象是开口向上的抛物线,当-
b |
2 |
②由f(x)的解析式可知c=0时,f(x)=-f(-x),其图象关于原点对称,
∵f(x)=x|x|+bx+c的图象由y=x|x|+bx向上或向下平移|c|个单位,
∴f(x)的图象关于(0,c)对称,故正确;
③当b≠0时,令b=1、c=0,则方程f(x)=0,
即x|x|+x=0,解得:x=0,故不正确;
④当b=0时,方程f(x)=0,
即x|x|+c=0,
(i)若c<0,
当x≤0时,即x2=c,此时无解;
当x>0时,即x2=-c,此时x=-
-c |
(ii)若c≥0,
当x≤0时,即x2=c,此时x=-
c |
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
|
-x2+bx+c, | x≤0 |
x2+bx+c, | x>0 |
-x2+bx+c, | x≤0 |
x2+bx+c, | x>0 |
-x2+bx+c, | x≤0 |
x2+bx+c, | x>0 |
-x2+bx+c, | x≤0 |
x2+bx+c, | x>0 |
①当x>0时,f(x)=x22+bx+c的图象是开口向上的抛物线,当-
b |
2 |
②由f(x)的解析式可知c=0时,f(x)=-f(-x),其图象关于原点对称,
∵f(x)=x|x|+bx+c的图象由y=x|x|+bx向上或向下平移|c|个单位,
∴f(x)的图象关于(0,c)对称,故正确;
③当b≠0时,令b=1、c=0,则方程f(x)=0,
即x|x|+x=0,解得:x=0,故不正确;
④当b=0时,方程f(x)=0,
即x|x|+c=0,
(i)若c<0,
当x≤0时,即x2=c,此时无解;
当x>0时,即x2=-c,此时x=-
-c |
(ii)若c≥0,
当x≤0时,即x2=c,此时x=-
c |
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
b |
2 |
②由f(x)的解析式可知c=0时,f(x)=-f(-x),其图象关于原点对称,
∵f(x)=x|x|+bx+c的图象由y=x|x|+bx向上或向下平移|c|个单位,
∴f(x)的图象关于(0,c)对称,故正确;
③当b≠0时,令b=1、c=0,则方程f(x)=0,
即x|x|+x=0,解得:x=0,故不正确;
④当b=0时,方程f(x)=0,
即x|x|+c=0,
(i)若c<0,
当x≤0时,即x22=c,此时无解;
当x>0时,即x22=-c,此时x=-
-c |
(ii)若c≥0,
当x≤0时,即x2=c,此时x=-
c |
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
-c |
(ii)若c≥0,
当x≤0时,即x22=c,此时x=-
c |
当x>0时,即x2=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
c |
当x>0时,即x22=-c,此时无解;
综上所述,当b=0时,方程f(x)=0有且只有一个实根,正确;
故答案为:②④.
看了 设函数f(x)=x|x|+b...的网友还看了以下:
已知f(x)是偶函数,且当0≤x≤π时,f(x)=sinx/2,又f(x+2π)=f(x),则当π 2020-05-16 …
在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f 2020-05-21 …
1.已知函数f(x)=1/2^x,x>1,又定义在(-1,1)上的奇函数g(x),当x>0时,g( 2020-06-03 …
已知函数f(x)=(ax^2+bx+c)e^x,其中e为自然数对数的底数,a,b,c为常数,若函数 2020-06-08 …
函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x))=x^1/ 2020-06-09 …
关于导数的一个疑惑F(X)=|X|,那么F(X)为偶函数,所以F(X)的导数为奇函数,又因为F(X 2020-06-10 …
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)> 2020-06-12 …
设定义在R上的函数F(X),对任意X,Y∈R有F(X+Y)=F(X)f(Y)设定义在R上的函数f( 2020-08-02 …
写出下列函数的解析表达式.1.设函数y=f(x),当x<0时,f(x)=0;当x≧0时,f(x)= 2020-08-03 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …