早教吧作业答案频道 -->数学-->
根据条件求二次函数的解析式(1)抛物线过(-1,0),(3,0),(1,-5)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2
题目详情
根据条件求二次函数的解析式(1)抛物线过(-1,0),(3,0),(1,-5)三点
(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3
(3)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2)
(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3
(3)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2)
▼优质解答
答案和解析
(1) 第一问是知道2个x轴交点、、
设所求抛物线的解析式为y=a(x+1)(x-3).
∵抛物线经过点(1,-5),
∴-5=a(1+1)(1-3).
∴a=-4∴y=一4(x+1)(x-3),即y=-4x2+8x+12
∵抛物线的顶点坐标是(-1,-1),
∴设抛物线解析式为y=a(x+1)2-1,
∵抛物线图象经过(0,-3),
∴a(0+1)2-1=-3,
解得a=-2,
所以,抛物线解析式为y=-2(x+1)2-1.
设此抛物线的解析式为:y=a(x-h)2+k,
∵抛物线的顶点坐标为(3,-2),
∴h=3,k=-2,
∴y=a(x-3)2-2,
∵且它在x轴上截得的线段长为4,
令y=0得,方程0=a(x-2)2+3,
即:ax2-6ax+9a-2=0,
∵抛物线y=a(x-3)2-2在x轴上的交点的横坐标为方程的根,设为x1,x2,
∴x1+x2=-b/a=6,x1•x2=c/a=(9a-2)/a
设所求抛物线的解析式为y=a(x+1)(x-3).
∵抛物线经过点(1,-5),
∴-5=a(1+1)(1-3).
∴a=-4∴y=一4(x+1)(x-3),即y=-4x2+8x+12
∵抛物线的顶点坐标是(-1,-1),
∴设抛物线解析式为y=a(x+1)2-1,
∵抛物线图象经过(0,-3),
∴a(0+1)2-1=-3,
解得a=-2,
所以,抛物线解析式为y=-2(x+1)2-1.
设此抛物线的解析式为:y=a(x-h)2+k,
∵抛物线的顶点坐标为(3,-2),
∴h=3,k=-2,
∴y=a(x-3)2-2,
∵且它在x轴上截得的线段长为4,
令y=0得,方程0=a(x-2)2+3,
即:ax2-6ax+9a-2=0,
∵抛物线y=a(x-3)2-2在x轴上的交点的横坐标为方程的根,设为x1,x2,
∴x1+x2=-b/a=6,x1•x2=c/a=(9a-2)/a

看了 根据条件求二次函数的解析式(...的网友还看了以下:
在平面坐标系中 抛物线的解析式是y=1/4xx+1,点c的坐标为(-4.0),平行四边形oabc的 2020-05-16 …
如图,抛物线y=-x^2+bx+c经过点A(1,0)和点B(0,5).(1)求此抛物线的解析式及顶 2020-05-16 …
在平面直角坐标系中抛物线AX²+BX+C经过A(-2,0)O(0,0)B(2,4)三点(1)求抛物 2020-05-16 …
平行四边形ABCD中,AB=4,D点坐标为(0,8),以点C为顶点的抛物线y=ax²+bx+c经过 2020-05-23 …
一条抛物线y=1/4x的平方+mx+n经过点A(o,3/2),与B(4,3/2).1,求这条抛物线 2020-06-12 …
在平面直角坐标系中,抛物线y=ax的平方+2ax-b与x轴交于A,B两点,.在平面直角坐标系中,抛 2020-06-14 …
如图,在平面直角坐标系中,直线Y=-根号3X-根号3与X轴交于点A,与Y轴交于点C抛物线Y=AX平 2020-06-14 …
已知抛物线的对称轴方程X=4,该抛物线与X轴交于A,B点,与y轴交与C点,O是原点坐标,且A,c坐 2020-07-09 …
已知:平行四边形ABCD在直角坐标系中的位置如图,O是坐标原点,OB:OC:OA=1:3:5,S□ 2020-07-29 …
标准的椭圆方程与标准的抛物线方程的解的横坐标有时为什么不唯一?标准的椭圆方程x^2/4+y^2/3 2020-08-02 …