早教吧作业答案频道 -->其他-->
(2010•福建模拟)已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2).(Ⅰ)求抛物线C的方程;(Ⅱ)命题:“过椭圆x225+y216=1的一个焦点F1作与x轴不垂直的任意直线l”交椭
题目详情
(2010•福建模拟)已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过椭圆
+
=1的一个焦点F1作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
为定值,且定值是
”.命题中涉及了这么几个要素:给定的圆锥曲线T,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明.
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(不必证明).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过椭圆
x2 |
25 |
y2 |
16 |
|AB| |
|F1M| |
10 |
3 |
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(不必证明).
▼优质解答
答案和解析
(Ⅰ)依题意,可设抛物线C的方程为:y2=2px(p>0),
∵抛物线C过点(1,2),
∴22=2p,解得p=2.
∴抛物线C的方程为:y2=4x.
(Ⅱ)关于抛物线C的类似命题为:过抛物线y2=4x的焦点F(1,0)作与x轴不垂直的任意直线l,
交抛物线线于A,B两点,线段AB的垂直平分线交x轴于点M,则
为定值,且定值为2.
证明如下:
设直线AB的方程为x=ty+1,t≠0,
代入y2=4x,消去x,得y2-4ty-4=0.
∵△=16t2+16>0,
设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4,
x1+x2=t(y1+y2)+2=4t2+2,
∴线段AB中点P的坐标为(2t2+1,2t),
AB的垂直平分线MP的方程为y-2t=-t(x-2t2-1),
令y=0,解得x=2t2+3,
即M(2t2+3,0),
∴|FM|=2t2+2,
由抛物线定义知,|AB|=x1+x2+2=4t2+4,
∴
=2.
(Ⅲ)过抛物线的焦点F作与对称轴不垂直的任意直线l,交抛物线线于A,B两点,线段AB的垂直平分线交对称轴于点M,则
为定值,且定值为2.
∵抛物线C过点(1,2),
∴22=2p,解得p=2.
∴抛物线C的方程为:y2=4x.
(Ⅱ)关于抛物线C的类似命题为:过抛物线y2=4x的焦点F(1,0)作与x轴不垂直的任意直线l,
交抛物线线于A,B两点,线段AB的垂直平分线交x轴于点M,则
|AB| |
|FM| |
证明如下:
设直线AB的方程为x=ty+1,t≠0,
代入y2=4x,消去x,得y2-4ty-4=0.
∵△=16t2+16>0,
设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4,
x1+x2=t(y1+y2)+2=4t2+2,
∴线段AB中点P的坐标为(2t2+1,2t),
AB的垂直平分线MP的方程为y-2t=-t(x-2t2-1),
令y=0,解得x=2t2+3,
即M(2t2+3,0),
∴|FM|=2t2+2,
由抛物线定义知,|AB|=x1+x2+2=4t2+4,
∴
|AB| |
|FM| |
(Ⅲ)过抛物线的焦点F作与对称轴不垂直的任意直线l,交抛物线线于A,B两点,线段AB的垂直平分线交对称轴于点M,则
|AB| |
|FM| |
看了 (2010•福建模拟)已知抛...的网友还看了以下:
自抛物线y^2=2px的顶点O作互相垂直的直线,分别交抛物线于P、Q.证明弦PQ与抛物线的轴交于定 2020-05-13 …
过抛物线的一条弦的中点作平行于抛物线的轴的平行线,交抛物线于一点,称以该点及弦的端点为顶点的三角形 2020-05-13 …
一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到 2020-07-21 …
已知A,B,C是抛物线y^2=2px上的三点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于 2020-07-26 …
一题;已知ABC,是抛物线Y^2=2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的 2020-07-29 …
已知A、B、C是抛物线y2=2px上的三点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D 2020-08-01 …
数学解析几何题,求第二问详细思路!过抛物线的一条弦的中点作平行于抛物线的轴的平行线,交抛物线于一点 2020-08-02 …
:一抛物线的轴平衡于X轴开口向左且通过原定和店(2,1)求当它于Y轴所围的面积最小时的方程一抛物线的 2020-11-04 …
(本小题满分8分)嫦娥2号月球卫星接收天线的轴截面为如图所示的抛物线型,已知接收天线的口径(直径)为 2020-11-26 …
请问螺旋线轴线如何用曲线?要使螺旋线的轴线为曲线该怎么办?谢谢! 2020-12-05 …