早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一题;已知ABC,是抛物线Y^2=2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D,E两点.求证:抛物线的顶点平分线段DE.二题;经过抛物线y^2=2px(p>0)的顶点O任作两条互相垂直的线段OA和OB

题目详情
一题;已知ABC,是抛物线Y^2=2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D,E两点.求证:抛物线的顶点平分线段DE.
二题;经过抛物线y^2=2px(p>0)的顶点O任作两条互相垂直的线段OA和OB,以直线OA的斜率k为参数,求线段AB的中点M的轨迹的参数方程.
▼优质解答
答案和解析
抛物线参数方程为y=t,x=t^2/2p
设B(t1^2/2p,t1),C(t1^2/2p,-t1),A(t2^2/2p,t2)
所以求得AC的直线方程为
y-t2=(t2-t1)(x-t2^2/2p)/((t2^2/2p)-(t1^2/2p))
化简y-t2=2p(x-t2^2/2p)/(t1+t2)
同理求得直线AB方程为
y-t2=2p(x-t2^2/2p)/(t2-t1)
所以可以求出AB、AC与x轴即抛物线轴交点
D(-t1t2/2p,0)、E(t1t2/2p,0)
所以,抛物线的顶点平分线段DE
抛物线的参数方程
x=2p*t^2
y=2p*t
设A(2p*m^2,2p*m)设B(2p*n^2,2p*n)
因为向量A*向量B=0
即(2p*m^2)*(2p*n^2)+(2p*m)(2p*n)=0
得:m=-1/n
A(2p*m^2,2p*m)设B(2p/m^2,-2p/m)
因为M为A,B中点,
所以M 轨迹de方程为 :
x=2p(m^2+1/m^2)
y=2p(m-1/m)