早教吧作业答案频道 -->数学-->
一题;已知ABC,是抛物线Y^2=2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D,E两点.求证:抛物线的顶点平分线段DE.二题;经过抛物线y^2=2px(p>0)的顶点O任作两条互相垂直的线段OA和OB
题目详情
一题;已知ABC,是抛物线Y^2=2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D,E两点.求证:抛物线的顶点平分线段DE.
二题;经过抛物线y^2=2px(p>0)的顶点O任作两条互相垂直的线段OA和OB,以直线OA的斜率k为参数,求线段AB的中点M的轨迹的参数方程.
二题;经过抛物线y^2=2px(p>0)的顶点O任作两条互相垂直的线段OA和OB,以直线OA的斜率k为参数,求线段AB的中点M的轨迹的参数方程.
▼优质解答
答案和解析
抛物线参数方程为y=t,x=t^2/2p
设B(t1^2/2p,t1),C(t1^2/2p,-t1),A(t2^2/2p,t2)
所以求得AC的直线方程为
y-t2=(t2-t1)(x-t2^2/2p)/((t2^2/2p)-(t1^2/2p))
化简y-t2=2p(x-t2^2/2p)/(t1+t2)
同理求得直线AB方程为
y-t2=2p(x-t2^2/2p)/(t2-t1)
所以可以求出AB、AC与x轴即抛物线轴交点
D(-t1t2/2p,0)、E(t1t2/2p,0)
所以,抛物线的顶点平分线段DE
抛物线的参数方程
x=2p*t^2
y=2p*t
设A(2p*m^2,2p*m)设B(2p*n^2,2p*n)
因为向量A*向量B=0
即(2p*m^2)*(2p*n^2)+(2p*m)(2p*n)=0
得:m=-1/n
A(2p*m^2,2p*m)设B(2p/m^2,-2p/m)
因为M为A,B中点,
所以M 轨迹de方程为 :
x=2p(m^2+1/m^2)
y=2p(m-1/m)
设B(t1^2/2p,t1),C(t1^2/2p,-t1),A(t2^2/2p,t2)
所以求得AC的直线方程为
y-t2=(t2-t1)(x-t2^2/2p)/((t2^2/2p)-(t1^2/2p))
化简y-t2=2p(x-t2^2/2p)/(t1+t2)
同理求得直线AB方程为
y-t2=2p(x-t2^2/2p)/(t2-t1)
所以可以求出AB、AC与x轴即抛物线轴交点
D(-t1t2/2p,0)、E(t1t2/2p,0)
所以,抛物线的顶点平分线段DE
抛物线的参数方程
x=2p*t^2
y=2p*t
设A(2p*m^2,2p*m)设B(2p*n^2,2p*n)
因为向量A*向量B=0
即(2p*m^2)*(2p*n^2)+(2p*m)(2p*n)=0
得:m=-1/n
A(2p*m^2,2p*m)设B(2p/m^2,-2p/m)
因为M为A,B中点,
所以M 轨迹de方程为 :
x=2p(m^2+1/m^2)
y=2p(m-1/m)
看了 一题;已知ABC,是抛物线Y...的网友还看了以下:
(1)求点P(3,-2)到直线y=3/4x+1/4的距离;(2)求两条平行线L1:3x+4y-2= 2020-05-12 …
架设一条输电路,要求线路两端都架设一根电线杆.现在有两种方案可选择方案:方案(1):每隔50米放一 2020-05-21 …
已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆 2020-06-14 …
如图,已知直线y=kx+b经过A(4,0)和B(0,4)两点,它与抛物线y=36/49x²交于P点 2020-06-14 …
关于抛物线若A,B是抛物线y²=4x上的不同两两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于 2020-06-14 …
已知抛物线C:x^2-2py(p>0)的准线被圆x^2+y^2=p^2截得弦长为2根号3,过抛物线 2020-07-26 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,过原点O 2020-08-01 …
已知线段AB被点C(2,0,2)与D(5,-2,0)三等分,试求线段两个端点A与B的坐标. 2020-08-02 …
第二题中:且M分有向线段AB的比为2,是什么意思?已知两点M(0,2),N(0,-2),且点P到这 2020-08-02 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …