早教吧作业答案频道 -->数学-->
∫(1+x^2)^3/2dx=?没多少积分了,请各位大侠多包涵.∫(1+x^2)^(-3/2)dx=?呢
题目详情
∫(1+x^2)^3/2dx=?没多少积分了,请各位大侠多包涵.
∫(1+x^2)^(-3/2)dx=?呢
∫(1+x^2)^(-3/2)dx=?呢
▼优质解答
答案和解析
令x = tany,dx = sec²y dy
J = ∫ (1 + x²)^(3/2) dx
= ∫ (1 + tan²y)^(3/2) (sec²y dy)
= ∫ (sec²y)^(3/2) * sec²y dy,恒等式1 + tan²x = sec²x
= ∫ [secy]^5 dy ...(★)
= ∫ sec³y d(tany)
= sec³y tany - ∫ tany d(sec³y)
= sec³y tany - ∫ tany 3sec²y secy tany dy
= sec³y tany - 3∫ tan²y sec³y dy
= sec³y tany - 3∫ (sec²y - 1)sec³y dy
=> J = sec³y tany - 3J + 3K
K = ∫ sec³y dy = ∫ secy d(tany)
= secy tany - ∫ tany d(secy)
= secy tany - ∫ tany secy tany dy
= secy tany - ∫ (sec²y - 1)secy dy
= secy tany - K + ∫ secy dy
2K = secy tany + ∫ secy dy
K = (1/2)secy tany + (1/2)ln|secy + tany|
∴J = sec³y tany - 3J + 3K
4J = sec³y tany + (3/2)secy tany + (3/2)ln|secy + tany|
J = (1/4)sec³y tany + (3/8)secy tany + (3/8)ln|secy + tany| + C
= (1/4)x(1 + x²)^(3/2) + (3/8)x√(1 + x²) + (3/8)ln|x + √(1 + x²)| + C
不想做得这么复杂的话,在(★)处可用降幂公式:
∫ [secy]^n dy = [siny (secy)^(n - 1)]/(n - 1) + [(n - 2)/(n - 1)]∫ [secy]^(n - 2) dy,代入n = 5和n = 3后就计算到了
case 2 简单得多.
∫ (1 + x²)^(-3/2) dx,x = tany,dx = sec²y dy
= ∫ (1 + tan²y)^(-3/2) sec²y dy
= ∫ (sec²y)^(-3/2) sec²y dy
= ∫ 1/sec³y * sec²y dy
= ∫ cosy dy
= siny + C
= x/√(1 + x²) + C
J = ∫ (1 + x²)^(3/2) dx
= ∫ (1 + tan²y)^(3/2) (sec²y dy)
= ∫ (sec²y)^(3/2) * sec²y dy,恒等式1 + tan²x = sec²x
= ∫ [secy]^5 dy ...(★)
= ∫ sec³y d(tany)
= sec³y tany - ∫ tany d(sec³y)
= sec³y tany - ∫ tany 3sec²y secy tany dy
= sec³y tany - 3∫ tan²y sec³y dy
= sec³y tany - 3∫ (sec²y - 1)sec³y dy
=> J = sec³y tany - 3J + 3K
K = ∫ sec³y dy = ∫ secy d(tany)
= secy tany - ∫ tany d(secy)
= secy tany - ∫ tany secy tany dy
= secy tany - ∫ (sec²y - 1)secy dy
= secy tany - K + ∫ secy dy
2K = secy tany + ∫ secy dy
K = (1/2)secy tany + (1/2)ln|secy + tany|
∴J = sec³y tany - 3J + 3K
4J = sec³y tany + (3/2)secy tany + (3/2)ln|secy + tany|
J = (1/4)sec³y tany + (3/8)secy tany + (3/8)ln|secy + tany| + C
= (1/4)x(1 + x²)^(3/2) + (3/8)x√(1 + x²) + (3/8)ln|x + √(1 + x²)| + C
不想做得这么复杂的话,在(★)处可用降幂公式:
∫ [secy]^n dy = [siny (secy)^(n - 1)]/(n - 1) + [(n - 2)/(n - 1)]∫ [secy]^(n - 2) dy,代入n = 5和n = 3后就计算到了
case 2 简单得多.
∫ (1 + x²)^(-3/2) dx,x = tany,dx = sec²y dy
= ∫ (1 + tan²y)^(-3/2) sec²y dy
= ∫ (sec²y)^(-3/2) sec²y dy
= ∫ 1/sec³y * sec²y dy
= ∫ cosy dy
= siny + C
= x/√(1 + x²) + C
看了 ∫(1+x^2)^3/2dx...的网友还看了以下:
由直线y=x+1上的一点向圆(x-3)3+y2=1引切线,则切线长最小时由直线l.PC和x轴所围成 2020-05-22 …
关于全书上一道用高斯公式求解曲面积分的问题第十章课后习题第三大题的第一小题曲面积分,积分区域应该包 2020-06-10 …
1第1,2,3,4象限包括X和Y轴吗?应该不包括吧?如,第一象限应该不包扩x的正半轴和Y的正半轴吧 2020-06-17 …
当x=0时怎么确定∫(积分上限为x积分下线为0)f(t)dt的定义域中包括x=0设f(x)是奇函数 2020-06-26 …
累次积分的计算累次积分∫(积分上限)pai/2(积分下限)0dθ∫(积分上限)cosθ(积分下限) 2020-07-08 …
求sinx=sin3x的解集没学过和差化积.x=3x-2kπ或x=2kπ+π-3x这步没看懂。。 2020-07-14 …
设X=[a,b],Y=[c,d]都是闭区间,则“直积”X×Y={(x,y)|x∈X,y∈Y}表示直 2020-07-31 …
之高等方程式2x3-5x2-8x2-8x+5=03x3-2x2-4x-1=0x3-6x+4=0x3 2020-08-02 …
数学(10)之高等方程式x3+6x2+11x+6=0x3-9x2+26x-24=0x3-3x+2x 2020-08-02 …
数学(11)之高等方程式x3-x2-4x+4=0x3-3x2-10x+24=0x3+2x2-5x- 2020-08-02 …