早教吧作业答案频道 -->数学-->
几个关于导数定义的问题,(有点繁琐,恳请耐心帮忙下!)导数定义中的:如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim△y/△x=lim[f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(
题目详情
几个关于导数定义的问题,(有点繁琐,恳请耐心帮忙下!)
导数定义中的:如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.① 我的理解:这里的△X→0,△y/△x有极限,即是最大值,但是这里△y=f(x0+△x)-f(x0),当△x→0,△y不也变小了吗,怎么会有最大值?
如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.这句话中,有这样一句:则称这个极限值为f(x)在x0处的导数或变化率.出现导数一词
由于“点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.这句话中又出现导数一词.②这段话中的“导数”这个词和前那段话的相同吗?
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[[x0,f(x0)] 点的切线斜率.(导数的几何意义是该函数曲线在这一点上的切线斜率).③ 这段话中 :说的切线斜率是不是在这点△x→0,△y/△x,如果是.那么相切的时候这个点不就没有△y/△x可言了吗,都是0.
以上的①②③是我针对导数各定义的问题,能带图说明最好,我的理解那里错了,请帮我讲解.
导数定义中的:如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.① 我的理解:这里的△X→0,△y/△x有极限,即是最大值,但是这里△y=f(x0+△x)-f(x0),当△x→0,△y不也变小了吗,怎么会有最大值?
如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.这句话中,有这样一句:则称这个极限值为f(x)在x0处的导数或变化率.出现导数一词
由于“点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.这句话中又出现导数一词.②这段话中的“导数”这个词和前那段话的相同吗?
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[[x0,f(x0)] 点的切线斜率.(导数的几何意义是该函数曲线在这一点上的切线斜率).③ 这段话中 :说的切线斜率是不是在这点△x→0,△y/△x,如果是.那么相切的时候这个点不就没有△y/△x可言了吗,都是0.
以上的①②③是我针对导数各定义的问题,能带图说明最好,我的理解那里错了,请帮我讲解.
▼优质解答
答案和解析
你最好去翻翻极限的定义.
看了 几个关于导数定义的问题,(有...的网友还看了以下:
关于二阶导数!二阶导数也很难,就是原函数导数的导数.二阶导数可以记作y‘‘=d^2y/dx^2即y' 2020-03-30 …
y'|x=-1 导数 极限 斜率 什么的∵lim x→0 f(1)−f(1−2x) 2x =lim 2020-05-17 …
为什么用不同的方法求极限、求导得出的结果会不一样?哪些函数可以直接求极限,哪些必须要先化简再求呢? 2020-06-04 …
一个关于多元函数求微分的问题f(lnx,y/x)=[x^2+x(lny-lnx)]/(y+xlnx 2020-06-05 …
大学导数简单题求导.1.y=f(x^2)2.y=f(sin^2(x))+f(cos^2(x))3求 2020-06-13 …
二阶导数~二阶导数也很难,就是原函数导数的导数.二阶导数可以记作y‘‘=d^2y/dx^2即y'' 2020-08-02 …
用隐函数求导法则对x^y=y^x求导为什么会得出x^2=y^2x^y=y^x用隐函数求导法则yx^( 2020-10-31 …
已知当x无限趋近于0时,sinx/x无限趋近于1.据此,用导数的定义求y=sinx的导数 2021-01-04 …
有关判断函数是否可导的问题我做题时看到这么一句话:由y(x)连续可知∫(1,x)y(t)dt可导(积 2021-02-13 …
x的x次方求导兄弟我还是没搞明白这个问题,(x乘y)的导数我知道,是x的导数乘y加上y的导数乘x,但 2021-02-16 …