早教吧 育儿知识 作业答案 考试题库 百科 知识分享

为什么用不同的方法求极限、求导得出的结果会不一样?哪些函数可以直接求极限,哪些必须要先化简再求呢?比如:求y=sin2x的导数看见这样的题目我就直接套公式了,y'=(sin2x)'=cos2x但是教材

题目详情
为什么用不同的方法求极限、求导得出的结果会不一样?哪些函数可以直接求极限,哪些必须要先化简再求呢?
比如:求 y=sin2x的导数
看见这样的题目我就直接套公式了,y'=(sin2x)'=cos2x
但是教材上标准答案是y'=(sin2x)'=(2sinxcosx)'=2[(sinx)'cosx+sinx(cosx)']=2(cos²x-sin²x)=2cos2x
还有很多其它当limx→0时求极限的题目,最后结果算着是0,但是标准答案确是一个常数;或者有些题目想方设法化简了求出常数结果,答案却又是0或者无穷大.
现在好迷茫啊,做题目的时候都不知道要选择什么样的方法才能得到标准答案了.
▼优质解答
答案和解析
首先,y=sin2x是一个复合函数,需要2次求导,应该先求外面的导如y=sinu(u=2x)变为y=u'cosu,下一步求u=2x的导数,就得到了y=2cos2x,对于后面的求极限,当时我也很纠结,但是我们不能再用高中时的眼光看待这些题目,你需要搞清楚临界值和一些常见的式子,这个靠你自己了,观念问题吧,慢慢来就学好叻的,别怕.
看了 为什么用不同的方法求极限、求...的网友还看了以下: