早教吧作业答案频道 -->数学-->
抛物线y=mx2-4m(m>0)与x轴交于A.B两点,(点A在点B左侧),与Y轴交于点C,已知OC=2OA(1)求AB两点坐标(2)求抛物线的解析式(3)P点使三角形PAC的内心在x轴上求出P点
题目详情
抛物线y=mx2-4m(m>0)与x轴交于A.B两点,(点A在点B左侧),与Y轴交于点C,已知OC=2OA
(1)求AB两点坐标
(2)求抛物线的解析式
(3)P点使三角形PAC的内心在x轴上
求出P点
(1)求AB两点坐标
(2)求抛物线的解析式
(3)P点使三角形PAC的内心在x轴上
求出P点
▼优质解答
答案和解析
⑴令Y=m(X+2)(X-2)=0,得X=-2或2,
∴A(-2,0),B(2,0),
∵OC=2OA,m>0,∴OC=4,且C在Y轴负半轴,即C(0,-4),
∴-4=-4m,m=1,
∴Y=X^2-4.
⑵过P作PQ⊥Q,
∵内心在X轴上,∴∠PAQ=∠CAO,
∴RTΔPAQ∽RTΔCAO,
∴PQ/AQ=OC/OA=2,
设P(m,m^2-4),
则M^2-4=2(m+2),
m^2-2m-8=0,
(m-4)(m+2)=0,
m=4或m=-2(舍去).
∴P(4,12).
∴A(-2,0),B(2,0),
∵OC=2OA,m>0,∴OC=4,且C在Y轴负半轴,即C(0,-4),
∴-4=-4m,m=1,
∴Y=X^2-4.
⑵过P作PQ⊥Q,
∵内心在X轴上,∴∠PAQ=∠CAO,
∴RTΔPAQ∽RTΔCAO,
∴PQ/AQ=OC/OA=2,
设P(m,m^2-4),
则M^2-4=2(m+2),
m^2-2m-8=0,
(m-4)(m+2)=0,
m=4或m=-2(舍去).
∴P(4,12).
看了 抛物线y=mx2-4m(m>...的网友还看了以下:
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=mx( 2020-04-08 …
已知直线 y=-3/4x+m与x轴y轴分别交于点A和点B,点B的坐标为(0,6) (1)求的m值和 2020-05-13 …
已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶 2020-05-16 …
如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点 2020-06-12 …
(2013•温州二模)已知,如图双曲线y=4x(x>0)与直线EF交于点A、点B,且AE=AB=B 2020-06-23 …
如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个 2020-07-17 …
(2012•荣昌县模拟)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正 2020-07-18 …
已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C 2020-07-25 …
已知点A是圆F1:(x+3)2+y2=16上任意一点,点F2与点F1关于原点对称.线段AF2的中垂 2020-08-01 …
如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个 2020-08-03 …