早教吧作业答案频道 -->数学-->
已知在等差数列{an}中,a3=4,前7项和等于35,数列{bn}中,点(bn,Sn)在直线x+2y-2=0上,其中Sn是数列{bn}的前n项和(n属于N*)求数列{an}的通项公式求证:数列{bn}是等比数列设cn=an*bn,Tn为数列{cn}前n项和
题目详情
已知在等差数列{an}中,a3=4,前7项和等于35,数列{bn}中,点(bn,Sn)在直线x+2y-2=0上,其中Sn是数列{bn}的前n项和(n属于N*)
求数列{an}的通项公式
求证:数列{bn}是等比数列
设cn=an*bn,Tn为数列{cn}前n项和,求Tn并证明:4/3≤Tn≤5/2
好的可以追加分数
回答那位
求数列{an}的通项公式
求证:数列{bn}是等比数列
设cn=an*bn,Tn为数列{cn}前n项和,求Tn并证明:4/3≤Tn≤5/2
好的可以追加分数
回答那位
▼优质解答
答案和解析
(1)前7项和为35 得7*a4=35 a4=5
则d=a4-a3=1
an=n+1
(2)bn+2*sn-2=0
bn_1+2*sn_1 -2=0
两个式子想减 bn-bn_1+2*bn=0 得到bn/bn_1=1/3
当n=1时 b1+2*b1-2=0 得b1=2/3
所以bn是等比数列 bn=2/3*(1/3)^(n-1)=2*(1/3)^n
(3)cn=an*bn=(n+1)*2*(1/3)^n
Tn= (1+1)*2*(1/3)+(2+1)*2*(1/3)^2+(3+1)*2*(1/3)^3+...+(n-1+1)*2(1/3)^n_1 +(n+1)*2*(1/3)^n
1/3*Tn= (1+1)*2*(1/3)^2+(2+1)*2*(1/3)^3+...+(n-2+1)*2(1/3)^n_1 +(n)*2*(1/3)^n+(n+1)*2*(1/3)^n+1
两式相减 得 2/3Tn=4/3+ 2*(1/3)^2+2*(1/3)^3+...+2*(1/3)^n_1+2*(1/3)^n-(n+1)*2*(1/3)^n+1
下面求得 Tn判断Tn的范围即可 可以用数学归纳法 内容太长不再赘述
则d=a4-a3=1
an=n+1
(2)bn+2*sn-2=0
bn_1+2*sn_1 -2=0
两个式子想减 bn-bn_1+2*bn=0 得到bn/bn_1=1/3
当n=1时 b1+2*b1-2=0 得b1=2/3
所以bn是等比数列 bn=2/3*(1/3)^(n-1)=2*(1/3)^n
(3)cn=an*bn=(n+1)*2*(1/3)^n
Tn= (1+1)*2*(1/3)+(2+1)*2*(1/3)^2+(3+1)*2*(1/3)^3+...+(n-1+1)*2(1/3)^n_1 +(n+1)*2*(1/3)^n
1/3*Tn= (1+1)*2*(1/3)^2+(2+1)*2*(1/3)^3+...+(n-2+1)*2(1/3)^n_1 +(n)*2*(1/3)^n+(n+1)*2*(1/3)^n+1
两式相减 得 2/3Tn=4/3+ 2*(1/3)^2+2*(1/3)^3+...+2*(1/3)^n_1+2*(1/3)^n-(n+1)*2*(1/3)^n+1
下面求得 Tn判断Tn的范围即可 可以用数学归纳法 内容太长不再赘述
看了 已知在等差数列{an}中,a...的网友还看了以下:
6道数列题,1.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于多少? 2020-05-14 …
已知圆C:x^2+y^2-2x+4y-4=0,直线L:x+y+3=0,求直线L已知圆C:x^2+y 2020-05-19 …
1.已知在等差数列{an}中,a1<0,S25=S45,若Sn最小,求n.2.在等差数列{an}中 2020-07-09 …
在等差数列{an}中,(1)已知a3=31,a7=76,求a1和d(2)已知a4=4,a8=-4, 2020-07-09 …
已知等差{an}的公差是d,且a3*a7=-12,a4+a6=-4,则公差d=已知三角型abc中, 2020-07-09 …
4已知抛物线y2=8x上两个动点A、B及一个定点M(x0,y0),F是抛物线的焦点,且|AF|、| 2020-07-22 …
几道简单直线方程,1.求过p1(2,1),p2(0,-3)两点的直线方程,再化成斜截式方程2.经过 2020-08-01 …
在等差数列{An}中,1.已知a1+a5+a9=-2求a5.2.已知a2+a7+a8+a3=8,求a 2020-10-31 …
已知等差数列{an}的前n项和记为sn,如果a4=-12,a8=-4已知等差数列{an}的前n项和记 2020-10-31 …
高一数学,要直接答案,在线等待高手解答.1.求值:sin15°sin75°=?2.已知三个向量OA( 2021-02-04 …