早教吧作业答案频道 -->数学-->
已知在等差数列{an}中,a3=4,前7项和等于35,数列{bn}中,点(bn,Sn)在直线x+2y-2=0上,其中Sn是数列{bn}的前n项和(n属于N*)求数列{an}的通项公式求证:数列{bn}是等比数列设cn=an*bn,Tn为数列{cn}前n项和
题目详情
已知在等差数列{an}中,a3=4,前7项和等于35,数列{bn}中,点(bn,Sn)在直线x+2y-2=0上,其中Sn是数列{bn}的前n项和(n属于N*)
求数列{an}的通项公式
求证:数列{bn}是等比数列
设cn=an*bn,Tn为数列{cn}前n项和,求Tn并证明:4/3≤Tn≤5/2
好的可以追加分数
回答那位
求数列{an}的通项公式
求证:数列{bn}是等比数列
设cn=an*bn,Tn为数列{cn}前n项和,求Tn并证明:4/3≤Tn≤5/2
好的可以追加分数
回答那位
▼优质解答
答案和解析
(1)前7项和为35 得7*a4=35 a4=5
则d=a4-a3=1
an=n+1
(2)bn+2*sn-2=0
bn_1+2*sn_1 -2=0
两个式子想减 bn-bn_1+2*bn=0 得到bn/bn_1=1/3
当n=1时 b1+2*b1-2=0 得b1=2/3
所以bn是等比数列 bn=2/3*(1/3)^(n-1)=2*(1/3)^n
(3)cn=an*bn=(n+1)*2*(1/3)^n
Tn= (1+1)*2*(1/3)+(2+1)*2*(1/3)^2+(3+1)*2*(1/3)^3+...+(n-1+1)*2(1/3)^n_1 +(n+1)*2*(1/3)^n
1/3*Tn= (1+1)*2*(1/3)^2+(2+1)*2*(1/3)^3+...+(n-2+1)*2(1/3)^n_1 +(n)*2*(1/3)^n+(n+1)*2*(1/3)^n+1
两式相减 得 2/3Tn=4/3+ 2*(1/3)^2+2*(1/3)^3+...+2*(1/3)^n_1+2*(1/3)^n-(n+1)*2*(1/3)^n+1
下面求得 Tn判断Tn的范围即可 可以用数学归纳法 内容太长不再赘述
则d=a4-a3=1
an=n+1
(2)bn+2*sn-2=0
bn_1+2*sn_1 -2=0
两个式子想减 bn-bn_1+2*bn=0 得到bn/bn_1=1/3
当n=1时 b1+2*b1-2=0 得b1=2/3
所以bn是等比数列 bn=2/3*(1/3)^(n-1)=2*(1/3)^n
(3)cn=an*bn=(n+1)*2*(1/3)^n
Tn= (1+1)*2*(1/3)+(2+1)*2*(1/3)^2+(3+1)*2*(1/3)^3+...+(n-1+1)*2(1/3)^n_1 +(n+1)*2*(1/3)^n
1/3*Tn= (1+1)*2*(1/3)^2+(2+1)*2*(1/3)^3+...+(n-2+1)*2(1/3)^n_1 +(n)*2*(1/3)^n+(n+1)*2*(1/3)^n+1
两式相减 得 2/3Tn=4/3+ 2*(1/3)^2+2*(1/3)^3+...+2*(1/3)^n_1+2*(1/3)^n-(n+1)*2*(1/3)^n+1
下面求得 Tn判断Tn的范围即可 可以用数学归纳法 内容太长不再赘述
看了 已知在等差数列{an}中,a...的网友还看了以下:
数列{an}的前n项和记为Sn,已知a1=1,an+1=(n+2*)Sn/n(n=1,2,3…), 2020-04-06 …
数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证 2020-04-06 …
根据下列条件,求相应的等差数列{an}的有关未知数:(1)a1=20,an=54,Sn=999,求 2020-04-27 …
对于数列{an},{bn},Sn为数列{an}是前n项和,且Sn+1-(n+1)=Sn+an+n, 2020-05-17 …
(2014•崇明县一模)已知数列{an}的前n项和为Sn,且a1=12,an+1=n+12nan. 2020-05-17 …
等差数列{an}前n项和Sn,{bn}前n项和Tn,有Sn/Tn=(4n+1)/(3n-1),n为 2020-07-12 …
已知Sn满足Sn+√(Sn)-n-n=0,求〔1/an×an+1〕(n和n+1是a的下标)文字叙述 2020-07-29 …
等比数列{an}的前n项和Sn=2^n-1,则a1^2+a2^2+a3^2+...+an^2=前n 2020-07-30 …
1.数列{an}的前n项和记为Sn,已知a1=1,an+1(n+1是a的角标)=(n+2)/n×S 2020-08-02 …
求数列的时候,什么时候讨论n≥2.比如下列题目已知数列{an}中,Sn是它的前n项和,且Sn+1=4 2020-12-23 …