早教吧作业答案频道 -->其他-->
设P是二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,且∠APB=60°,则二面角α-l-β的大小为()A.30°B.60°C.60°或120°D.120°
题目详情
设P是二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,且∠APB=60°,则二面角α-l-β的大小为( )
A.30°
B.60°
C.60°或120°
D.120°
A.30°
B.60°
C.60°或120°
D.120°
▼优质解答
答案和解析
由A作AO⊥l,连结BO,OP
∵PA⊥α于A,OA⊂α,l⊂α,
∴PA⊥l,AO⊥l,且AO∩PA=A,
∴l⊥面POA.
∵PA⊂面POA,∴l⊥P0,
∵PB⊥β于B,l⊂β,∴PB⊥l,
∵PB∩PO=P,∴l⊥面POB于O,∴l⊥面POA于O.
∵过一点有且只有一个平面垂直于一条直线,∴P、O、B、A四点共面,
且由于OA OB分别包含于面POA和面POB,
∴l⊥OA,l⊥OB,AO∩OB=O,
∴∠AOB为二面角α-l-β的平面角,
∵P在二面角α-l-β内,∴∠APB+∠OBP+∠OAP+∠AOB=360°,
∵∠PAO=∠PBO=90°,∠APB=60°,
∴∠AOB=120°,
故二面角α-l-β为120°.
故选:D.
∵PA⊥α于A,OA⊂α,l⊂α,
∴PA⊥l,AO⊥l,且AO∩PA=A,
∴l⊥面POA.
∵PA⊂面POA,∴l⊥P0,
∵PB⊥β于B,l⊂β,∴PB⊥l,
∵PB∩PO=P,∴l⊥面POB于O,∴l⊥面POA于O.
∵过一点有且只有一个平面垂直于一条直线,∴P、O、B、A四点共面,
且由于OA OB分别包含于面POA和面POB,
∴l⊥OA,l⊥OB,AO∩OB=O,
∴∠AOB为二面角α-l-β的平面角,
∵P在二面角α-l-β内,∴∠APB+∠OBP+∠OAP+∠AOB=360°,
∵∠PAO=∠PBO=90°,∠APB=60°,
∴∠AOB=120°,
故二面角α-l-β为120°.
故选:D.
看了 设P是二面角α-l-β内一点...的网友还看了以下:
数学;如果知道a+b>0,b+c>0,c+a>0,怎么证明a^3+b^3+c^3+a+b+c>0? 2020-03-30 …
二次函数y=ax²+bx+c(a≠0)配方后的形式(大家一定要帮帮忙)ax²+bx+c=0(a>0 2020-05-16 …
已知二次函数y=ax2+bx+c(a≠0)的图像如图所示,有下列5个结论 已知二次函数y=ax2+ 2020-05-16 …
如图,抛物线y=ax²+bx+c(a>0交x轴于A,B两点,交y轴于C点,A点在B点的左侧,已知B 2020-06-14 …
如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,-1)的抛物线y=ax²+bx+c(a 2020-07-29 …
3角形3边abc求证:abc≥(a+b-c)(a+c-b)(b+c-a)假设x=a+b-c>0y=a 2020-11-01 …
数学二次函数已知抛物线y=ax方+bx+c(a>0)经过点(-1,0),且满足4a+2b+c>0.以 2020-11-01 …
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②a-b+c 2020-12-23 …
已知:如图,抛物线y=ax^2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于A,B,点A 2021-01-10 …
已知抛物线y=ax^2+bx+c(a≠0)过点P(1,-2)、Q(-1,2),且与x轴交与A(x1, 2021-01-10 …