早教吧作业答案频道 -->数学-->
直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、R两点,则当k取何值时,△PQR的面积最小,并求此时直线l的方程
题目详情
直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、R两点,则当k取何值时,△PQR的面积最小,并求此时直线l的方程
▼优质解答
答案和解析
设L:y=kx+2k+1 k=tanθ
直线M的斜率为
m=tan(θ+π/4)=(tanθ+tanπ/4)/(1-tanθ*tanπ/4)=(k+1)/(1-k)
直线M为y=(k+1)x/(1-k))+(k+3)/(1-k)
所以Q(0,2k+1);R(0,(k+3)/(1-k)) .
PQ=2k+1-(k+3)/(1-k)=(2k^2+2)/(k-1)
三角形PQR面积为【高为p到y轴距离】
S=1/2*(2k^2+2)/(k-1)*2
=(2k^2+2)/(k-1)
=2[(k-1)^2+2(k-1)+2]/(k-1)
=2[k-1+2+2/(k-1)]
用均值定理,当且仅当k-1=2/(k-1)时,S取最小值,k=1±√2,
因为k>1,所以k=1+√2
直线L的方程:y=(1+√2)x+3+2√2
直线M的斜率为
m=tan(θ+π/4)=(tanθ+tanπ/4)/(1-tanθ*tanπ/4)=(k+1)/(1-k)
直线M为y=(k+1)x/(1-k))+(k+3)/(1-k)
所以Q(0,2k+1);R(0,(k+3)/(1-k)) .
PQ=2k+1-(k+3)/(1-k)=(2k^2+2)/(k-1)
三角形PQR面积为【高为p到y轴距离】
S=1/2*(2k^2+2)/(k-1)*2
=(2k^2+2)/(k-1)
=2[(k-1)^2+2(k-1)+2]/(k-1)
=2[k-1+2+2/(k-1)]
用均值定理,当且仅当k-1=2/(k-1)时,S取最小值,k=1±√2,
因为k>1,所以k=1+√2
直线L的方程:y=(1+√2)x+3+2√2
看了 直线l点p(-2,1)且斜率...的网友还看了以下:
一均匀带电无限长直线外一点处的电场强度大小为E0,该点到带电直线的距离为r,则距离带电直线为r/2 2020-04-13 …
方程(a-1)x-y+2a+1=0(a属于R)所表示的直线直线可以理解为两条直线a(x+2)=0与 2020-06-12 …
在平面直角坐标系xOy中,点P在由直线,直线和直线所围成的区域内或其边界上,点Q在x轴上,若点R的 2020-06-14 …
(2014•宁波模拟)已知抛物线C的方程为y2=2px(p>0),点R(1,2)在抛物线C上.(Ⅰ 2020-07-21 …
如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请 2020-07-24 …
已知以点C(t,3t)(t∈R,t≠0)为圆心的圆过原点O.(Ⅰ)设直线3x+y-4=0与圆C交于 2020-07-24 …
关于三等分点在解析几何中的运用已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》 2020-07-29 …
(2014•南昌二模)抛物线C:x2=8y与直线y=2x-2相交于A,B两点,点P是抛物线C上不同A 2020-10-31 …
高中数学题!暑假作业本上的已知过点A(1,1)且斜率为-m(m>0)的直线l与X轴,Y轴分别交予点P 2020-11-01 …
(X=R*cost(y=R*sint表示什么曲线?(R是正常数,t在[0,2*3.1415)内无变化 2020-11-04 …