早教吧作业答案频道 -->其他-->
关于三等分点在解析几何中的运用已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》0)l2:y=-x(x》0)一直线过点(0,2)交l1,l2于R,S交双曲线于P,Q且P,Q为线段R,S的两个三等分点问:求该直线方程注:看过
题目详情
关于三等分点在解析几何中的运用
已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》0) l2:y=-x(x》0)
一直线过点(0,2)交l1,l2于R,S交双曲线于P,Q
且P,Q为线段R,S的两个三等分点
问:求该直线方程
注:看过有人问过这个题了,不过解答都省略了关于三等分点那个步骤的解答,主要就是不知道3等分点该如何运用,
已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》0) l2:y=-x(x》0)
一直线过点(0,2)交l1,l2于R,S交双曲线于P,Q
且P,Q为线段R,S的两个三等分点
问:求该直线方程
注:看过有人问过这个题了,不过解答都省略了关于三等分点那个步骤的解答,主要就是不知道3等分点该如何运用,
▼优质解答
答案和解析
设A点坐标为(Xa,Ya),B点坐标为(Xb,Yb).
如果AB线段的两个三等分点为C、D,即AC/CB=1/2,AD/DB=2.
那么,Xc=Xa+1/3(Xb-Xa)=2/3Xa+1/3Xb
同理,Xd=Xa+2/3(Xb-Xa)=1/3Xa+2/3Xb
C、D的y值得出办法与上相同.
公式如下,若一点K分线段AB的比例为z,即AQ/QB=z .
那么,Xk=Xa+[z/(z+1)]*(Xb -Xa)=[1/(z+1)]*Xa+[z/(z+1)]*Xb
Yk=Ya+[z/(z+1)]*(Yb -Ya)=[1/(z+1)]*Ya+[z/(z+1)]*Yb
如果AB线段的两个三等分点为C、D,即AC/CB=1/2,AD/DB=2.
那么,Xc=Xa+1/3(Xb-Xa)=2/3Xa+1/3Xb
同理,Xd=Xa+2/3(Xb-Xa)=1/3Xa+2/3Xb
C、D的y值得出办法与上相同.
公式如下,若一点K分线段AB的比例为z,即AQ/QB=z .
那么,Xk=Xa+[z/(z+1)]*(Xb -Xa)=[1/(z+1)]*Xa+[z/(z+1)]*Xb
Yk=Ya+[z/(z+1)]*(Yb -Ya)=[1/(z+1)]*Ya+[z/(z+1)]*Yb
看了 关于三等分点在解析几何中的运...的网友还看了以下:
已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)( 2020-05-15 …
已知直线l经过3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x-2y-1=0 求直 2020-05-16 …
双曲线x^2-y^2=1,直线l过(0,-1)交双曲线于A,B两点,O为原点,且S三角形AOB=√ 2020-05-23 …
直线y=-43x+n交x轴于点A,交y轴于点C(0,4),抛物线y=23x2+bx+c经过点A,交 2020-06-14 …
已知:如图,在△ABC中,BP、CP分别平分∠ABC和∠ACB,DE过点P交AB于D,交AC于E, 2020-06-27 …
如图,已知抛物线y=-x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P 2020-07-26 …
在平面直角坐标系xoy中,过定点c(0,p)作直线与抛物线y^2=2py(p>0)交于a,b两点, 2020-08-02 …
已知抛物线cy22px设抛物线上一点p的横坐标为t过p的直线交c与另一点已知抛物线C:y=x^2上一 2020-11-27 …
反比例函数题着重讲解下第三问如图,已知直线l经过点A(1,0),与双曲线y=mx(x>0)交于点B( 2020-12-18 …
已知抛物线y=ax^2+bx+c(a≠0)过点P(1,-2)、Q(-1,2),且与x轴交与A(x1, 2021-01-10 …