早教吧作业答案频道 -->数学-->
已经很多年没有接触过了,已知直线I过原点,抛物线C的顶点在原点,焦点在x轴的正半轴上,若A(-1,0),B(0,8)关于直线I对称的点都在C上,求直线I和抛物线C的方程.
题目详情
已经很多年没有接触过了,
已知直线I过原点,抛物线C的顶点在原点,焦点在x轴的正半轴上,若A(-1,0),B(0,8)关于直线I对称的点都在C上,求直线I和抛物线C的方程.
已知直线I过原点,抛物线C的顶点在原点,焦点在x轴的正半轴上,若A(-1,0),B(0,8)关于直线I对称的点都在C上,求直线I和抛物线C的方程.
▼优质解答
答案和解析
设y = kx 为直线l
因为A(-1,0),B(0,8)关于直线I对称的点都在C上
所以易得 k > 0
根据点关于直线对称的公式:
点(a,b)关于Ax+By+C=0对称的坐标为(a-2A(Aa+Bb+C)/(A^2+B^2)),b-2B(Aa+Bb+C)/(A^2+B^2))
可得A B 关于直线 y = kx 的对称点坐标为:
A'((k^2 - 1)/(k^2 + 1) , -2k/(k^2 + 1))
B'(16k/(k^2 + 1) , (8k^2 - 8)/(k^2 + 1))
再假设抛物线方程为:y^2 = 2px
将A' B'两点坐标代入方程可得方程组,
解该方程组即可
解得:
k = (1 + sqrt(5))/2
p = (48 + 16*sqrt(5))/(40 + 24*sqrt(5))
上述的sqrt代表开根号
因为A(-1,0),B(0,8)关于直线I对称的点都在C上
所以易得 k > 0
根据点关于直线对称的公式:
点(a,b)关于Ax+By+C=0对称的坐标为(a-2A(Aa+Bb+C)/(A^2+B^2)),b-2B(Aa+Bb+C)/(A^2+B^2))
可得A B 关于直线 y = kx 的对称点坐标为:
A'((k^2 - 1)/(k^2 + 1) , -2k/(k^2 + 1))
B'(16k/(k^2 + 1) , (8k^2 - 8)/(k^2 + 1))
再假设抛物线方程为:y^2 = 2px
将A' B'两点坐标代入方程可得方程组,
解该方程组即可
解得:
k = (1 + sqrt(5))/2
p = (48 + 16*sqrt(5))/(40 + 24*sqrt(5))
上述的sqrt代表开根号
看了 已经很多年没有接触过了,已知...的网友还看了以下:
如图,直线AB垂直于CD,垂足为点O,点P和点P1关于直线AB对称,点P和点P2关于直线CD对称① 2020-04-26 …
一道初中数学题、高手进、在线等、关于平面直角坐标系的平面直角坐标系中有点A(m+6n,-1),B( 2020-05-16 …
几何画板我作了一个三角形过一个顶点做对边的垂线交对边于一点由于做的是直线,我在交点处点了一个点随后 2020-05-22 …
如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,点E与点D关于直 2020-05-22 …
如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直 2020-07-24 …
若从矩形一边上的点到对边的视角是直角,即称该点是直角点。例如,如图的矩形中,点在边上,连接,,则点为 2020-10-31 …
周长最小问题的证明比如说已知两点在一条直线上有一动点求这三点组成三角形的周长最小值我知道是做一点的关 2020-12-01 …
如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线 2020-12-19 …
已知正方形ABCD,过D点的直线l从DA开始,绕D点顺时针旋转,旋转角为α,E、A关于直线l对称,连 2020-12-25 …
某数学兴趣小组为了估计河的宽度,在河对岸选定一个8标点P,在近岸取点Q和S,使点P,Q,S共线且直找 2021-01-02 …