早教吧作业答案频道 -->数学-->
高二用归纳法证明不等式的一道题 Ai>0(i=1,2,3...n) 且A1 +A2+.+An=1证明A1^2+A2^2+...+An^2>=1/n (n>=2 属于整数)
题目详情
高二用归纳法证明不等式的一道题
Ai>0(i=1,2,3...n) 且A1 +A2+.+An=1
证明A1^2+A2^2+...+An^2>=1/n (n>=2 属于整数)
Ai>0(i=1,2,3...n) 且A1 +A2+.+An=1
证明A1^2+A2^2+...+An^2>=1/n (n>=2 属于整数)
▼优质解答
答案和解析
A1 +A2+.+An=1
(A1 +A2+.+An)^2=A1^2+A2^2+...+An^2+2(A1A2+A2A3+……)=1 (1)
记A=A1^2+A2^2+...+An^2 = n (A1^2+A2^2+...+An^2)/ n
B=2(A1A2+A2A3+……)
由基本公式 a^2+b^2>=2ab
A1^2+A2^2>=2A1A2
A2^2+A3^2>=2A2A3
……
上述n-1个等式相加
得 (n-1)A>=B (2)
综合(1)和(2)得到A1^2+A2^2+...+An^2>=1/n
(A1 +A2+.+An)^2=A1^2+A2^2+...+An^2+2(A1A2+A2A3+……)=1 (1)
记A=A1^2+A2^2+...+An^2 = n (A1^2+A2^2+...+An^2)/ n
B=2(A1A2+A2A3+……)
由基本公式 a^2+b^2>=2ab
A1^2+A2^2>=2A1A2
A2^2+A3^2>=2A2A3
……
上述n-1个等式相加
得 (n-1)A>=B (2)
综合(1)和(2)得到A1^2+A2^2+...+An^2>=1/n
看了 高二用归纳法证明不等式的一道...的网友还看了以下:
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
(1)A、B均为n阶实对称正定矩阵,证明A-B正定则B^(-1)-A^(-1)亦正定(2)A、(1 2020-05-13 …
椭圆x^2/a^2+y^2/b^2=1的左右顶点分别为AB,点P在椭圆上且异于AB两点,O为坐标原 2020-05-16 …
已知函数f(x)=(a+1)lnx+ax2+1. (Ⅰ)讨论函数f(x)的单调性; (Ⅱ)设a≤-2 2020-05-25 …
a,b∈正整数,a³+b³=2,证明a+b≤2 2020-06-03 …
初学行列式,请帮我证明两道题,|ax+byay+bzza+bx||xyz|1、证明:|ay+bza 2020-06-11 …
下面的三角函数证明题希望给出详细证明在△ABC中,若a+b+c=1,求证:a2+b2+c2+4ab 2020-07-21 …
设A为一个n阶方阵,证明r(A^n)=r(A^n+1)=r(A^n+2)不要用若当标准型,也不要证 2020-07-31 …
a+b>2证明a,b中至少有一个实数大于1(不用反证法) 2020-08-01 …
(急)一道基本不等式证明题(高一数学)证明bc/a+ac/b+ab/c≥a+b+c证明:(请看我的 2020-08-03 …