早教吧作业答案频道 -->数学-->
已知椭圆x^2/4+y^2=1,设过定点M(0,2)的直线L与椭圆交于不同的AB两点且角AOB为锐角(O是坐标原点)求直线L的斜率K的取值范围
题目详情
已知椭圆x^2/4+y^2=1,设过定点M(0,2)的直线L与椭圆交于不同的AB两点且角AOB为锐
角(O是坐标原点)求直线L的斜率K的取值范围
角(O是坐标原点)求直线L的斜率K的取值范围
▼优质解答
答案和解析
由余弦定理:
cos∠AOB=(OA^2+OB^2-AB^2)/2OA*OB
∠AOB为锐角
则cos∠AOB>0
则OA^2+OB^2-AB^2>0
设A(x1,y1),B(x2,y2)
设直线方程为
y=kx+2
联立直线与椭圆
(4k^2+1)x^2+16kx+12=0
则
x1+x2=-16k/(4k^2+1)
x1x2=12/(4k^2+1)
而OA^2+OB^2-AB^2
=x1^2+y1^2+x^2+y2^2-(x1-x2)^2-(y1-y2)^2
=2(x1x2+y1y2)
而y1=kx1+2,y2=kx2+2
则原式=
2[x1x2+(kx1+2)(kx2+2)]
=2[k^2+1)x1x2+2k(x1+x2)+4]
带入伟达定理得
=2[12(k^2+1)/(4k^2+1)-32k^2/(4k^2+1)+4]>0
则
12(k^2+1)-32k^2+4(4k^2+1)>0
16-4k^2>0
则
-2
cos∠AOB=(OA^2+OB^2-AB^2)/2OA*OB
∠AOB为锐角
则cos∠AOB>0
则OA^2+OB^2-AB^2>0
设A(x1,y1),B(x2,y2)
设直线方程为
y=kx+2
联立直线与椭圆
(4k^2+1)x^2+16kx+12=0
则
x1+x2=-16k/(4k^2+1)
x1x2=12/(4k^2+1)
而OA^2+OB^2-AB^2
=x1^2+y1^2+x^2+y2^2-(x1-x2)^2-(y1-y2)^2
=2(x1x2+y1y2)
而y1=kx1+2,y2=kx2+2
则原式=
2[x1x2+(kx1+2)(kx2+2)]
=2[k^2+1)x1x2+2k(x1+x2)+4]
带入伟达定理得
=2[12(k^2+1)/(4k^2+1)-32k^2/(4k^2+1)+4]>0
则
12(k^2+1)-32k^2+4(4k^2+1)>0
16-4k^2>0
则
-2
看了 已知椭圆x^2/4+y^2=...的网友还看了以下:
已知圆.(1)求证:不论m为何值,圆心在同一直线l上;(2)与l平行的直线中,哪些与圆相交、相切、 2020-07-26 …
ABCD四种元素,已知A元素原子的K层和M层电子数相同,B元素原子的L层比K层电子数多5个,C元素 2020-07-29 …
过点P(1,0)的直线l与曲线C:+y2=1交于A、B两点过点P还有一直线l′与曲线C交于C、D两 2020-07-30 …
点A、B位于直线l的同侧,A、B关于直线l的对称点分别为点A'、B',点P在直线l上.当PA+PB 2020-08-01 …
已知直线l同旁的两点A、B,在l上求一点P,使PA+PB最小,则求P点的作法正确的为()A.作A关于 2020-11-06 …
A、B、C、D、E、F、G、L、I九种主族元素分别位于三个不同的短周期,它们的原子序数依次增大,其中 2020-11-17 …
点P为抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线 2020-12-01 …
如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x 2021-01-12 …
如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x 2021-01-12 …
自由贸易实验区将实施“负面清单”管理模式,即“法无禁止即可为”,不同于与以往限定企业“只能做什么”的 2021-01-14 …