早教吧作业答案频道 -->数学-->
第二道综合题已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的离心率为二分之一根号二,短轴端点到焦点的距离为2(1)求椭圆方程(2)过左焦点F作椭圆的弦MN,问在x轴上是否存在一点P,使得PM和PN的内
题目详情
第二道综合题
已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)
的离心率为二分之一根号二,短轴端点到焦点的距离为2
(1)求椭圆方程
(2)过左焦点F作椭圆的弦MN,问在x轴上是否存在一点P,使得PM和PN的内积为定值,试说明理由.
恳请会的人赐教,
已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)
的离心率为二分之一根号二,短轴端点到焦点的距离为2
(1)求椭圆方程
(2)过左焦点F作椭圆的弦MN,问在x轴上是否存在一点P,使得PM和PN的内积为定值,试说明理由.
恳请会的人赐教,
▼优质解答
答案和解析
(1) 由离心率为二分之一根号二得到;
c/a=二分之一根号二 (1)
由短轴端点到焦点的距离为2 得到:
c^2+b^2=4 (2)
由椭圆性质得到:
a^2=b^2+c^2 (3)
解(1)(2)(3)得;
a =2 b =根号二 c=根号二
所以椭圆方程 为:
(x^2)/4+(y^2)/2=1
(2)假设存在这样的p点;设坐标为(x1,0)
假设这个弦垂直于x轴.此时得到M(负根号二,1)
N( 负根号二,-1),则PM 向量=(负根号二-x1,-1) PN向量=(负根号二-x1,1)
此时内积为:x1^2-1+2倍根号二x1
假设不垂直时,设直线方程为y=k(x+根号二)联立(x^2)/4+(y^2)/2=1 得到:
((1+2k^2)/4)x^2+根号二kx+k^2-1=0;
设M(x2,y2) N(x3.y3)
所以x2+x3=(4根号二k/(1+2k^2) (3)
x2x3=(4(k^2-1))/(1+2k^2) (4)
PM 向量=(x2-x1,-y2)
PN向量=(x3-x1,-y3)内积为:x2x3-x1(x2+x3)+x1^2+y2y3
再由(3)(4)得到:
内积=(4(k^2-1))/(1+2k^2)-x1(4根号二k/(1+2k^2)+x1^2+y2y3=
这个计算复杂了,你照我这个思路做下去,就是要使内积为定值,就是上面两个内积是相等的且定值即可.
解析几何计算是相当的复杂的,要细心的,我在电脑旁就没有详细的算出了.
祝高考顺利了
c/a=二分之一根号二 (1)
由短轴端点到焦点的距离为2 得到:
c^2+b^2=4 (2)
由椭圆性质得到:
a^2=b^2+c^2 (3)
解(1)(2)(3)得;
a =2 b =根号二 c=根号二
所以椭圆方程 为:
(x^2)/4+(y^2)/2=1
(2)假设存在这样的p点;设坐标为(x1,0)
假设这个弦垂直于x轴.此时得到M(负根号二,1)
N( 负根号二,-1),则PM 向量=(负根号二-x1,-1) PN向量=(负根号二-x1,1)
此时内积为:x1^2-1+2倍根号二x1
假设不垂直时,设直线方程为y=k(x+根号二)联立(x^2)/4+(y^2)/2=1 得到:
((1+2k^2)/4)x^2+根号二kx+k^2-1=0;
设M(x2,y2) N(x3.y3)
所以x2+x3=(4根号二k/(1+2k^2) (3)
x2x3=(4(k^2-1))/(1+2k^2) (4)
PM 向量=(x2-x1,-y2)
PN向量=(x3-x1,-y3)内积为:x2x3-x1(x2+x3)+x1^2+y2y3
再由(3)(4)得到:
内积=(4(k^2-1))/(1+2k^2)-x1(4根号二k/(1+2k^2)+x1^2+y2y3=
这个计算复杂了,你照我这个思路做下去,就是要使内积为定值,就是上面两个内积是相等的且定值即可.
解析几何计算是相当的复杂的,要细心的,我在电脑旁就没有详细的算出了.
祝高考顺利了
看了 第二道综合题已知椭圆C:(x...的网友还看了以下:
关于3个数的比例差别最小的问题如果有3个数的比,如m:n:l,我的目标是使这3个数尽量相等,即比例 2020-05-23 …
2道初三代数型综合问题..1.设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m 2020-06-03 …
下列合并同类项正确的是A.3x-2y=xyB.4x-2y=2C.ab-ba=0D.x²+x³=x五 2020-06-06 …
拒绝粘贴M,N均为自然数,并且M分之1减N分之1等于273分之一,M:N=7:13,M+N=多少 2020-06-06 …
怎样证明根号3为无理数?反证若根号3是有理数,则有m/n的形式,m与n既约所以3=m^2/n^2m 2020-06-23 …
如果m分之一小于N分之一,M,N为非零自然数,那么9—M小于9-N.判断对错并说理由! 2020-07-31 …
1.x²-8xy+()=()²2.已知9x²-mxy+16y²是关于x、y的完全平方式,则m的值为 2020-08-01 …
没理解这句话:任一m*n矩阵都行等阶于一个m*n阶梯形矩阵.书上有一个定理:定理1.1:对于任一非 2020-08-02 …
9m+n的平方-四分之一m-n]的平方 2020-08-03 …
先化简再求值x-{y-2x+[3x-2(2x+y)+5y]},其中x=-1,y=2二分之一(m-n) 2020-11-03 …