早教吧作业答案频道 -->数学-->
感知如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.拓展如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.应用如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G
题目详情
【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为______.

【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为______.

▼优质解答
答案和解析
拓展:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
,
∴△BCE≌△DCG(SAS),
∴BE=DG.(6分)
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=2ED,
∴S△CDE=
×8=
,
∴S△ECG=S△CDE+S△CDG=
,
∴S菱形CEFG=2S△ECG=
.
故答案为:
.(9分)
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
|
∴△BCE≌△DCG(SAS),
∴BE=DG.(6分)
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=2ED,
∴S△CDE=
1 |
3 |
8 |
3 |
∴S△ECG=S△CDE+S△CDG=
32 |
3 |
∴S菱形CEFG=2S△ECG=
64 |
3 |
故答案为:
64 |
3 |
看了 感知如图①,四边形ABCD、...的网友还看了以下:
已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[ 2020-04-06 …
(2010•郑州二模)已知函数f(x)满足f(x)=f(π-x),且当x∈(-π2,π2)时,f( 2020-05-14 …
(2014•杭州二模)设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′( 2020-06-12 …
已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直 2020-06-27 …
如图是“二分法”解方程的流程图.在①~④处应填写的内容分别是()A.f(a)f(m)<0;a=m; 2020-07-09 …
函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f( 2020-07-13 …
设函数f(x)=ax2+bx+c(a>0),满足f(1-x)=f(1+x),则f(2x)与f(3x 2020-07-13 …
函数f(x)在(a,b)和(c,d)都是增函数,若x1∈(a,b),x2∈(c,d),且x1<x2 2020-07-13 …
下列各命题中哪一个是正确的?()A.f(x)在(a,b)内的极值点,必定是使f′(x)=0的点B. 2020-07-20 …
定义在R上的函数f(x)对任意两个不相等实数a,b,总有f(a)−f(b)a−b>0成立,则必有() 2020-11-20 …