早教吧作业答案频道 -->数学-->
阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D.悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.
题目详情
阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).
(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D.
悦悦是这样做的:
过点E作EF∥AB.则有∠BEF=∠B.
∵AB∥CD,∴EF∥CD.
∴∠FED=∠D.
∴∠BEF+∠FED=∠B+∠D.
即∠BED=∠B+∠D.
(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.
(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.

(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D.
悦悦是这样做的:
过点E作EF∥AB.则有∠BEF=∠B.
∵AB∥CD,∴EF∥CD.
∴∠FED=∠D.
∴∠BEF+∠FED=∠B+∠D.
即∠BED=∠B+∠D.
(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.
(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.

▼优质解答
答案和解析
(2)如图2所示,猜想:∠EGF=90°;
证明:由结论(1)得∠EGF=∠BEG+∠GFD,
∵EG、FG分别平分∠BEF和∠EFD,
∴∠BEF=2∠BEG,∠EFD=2∠GFD,
∵BE∥CF,
∴∠BEF+∠EFD=180°,
∴2∠BEG+2∠GFD=180°,
∴∠BEG+∠GFD=90°,
∵∠EGF=∠BEG+∠GFD,
∴∠EGF=90°;
(3)证明:如图3,过点G1作G1H∥AB,
∵AB∥CD,∴G1H∥CD,
由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,
∴∠3=∠G2FD,
∵FG2平分∠EFD,
∴∠4=∠G2FD,
∵∠1=∠2,
∴∠G2=∠2+∠4,
∵∠EG1F=∠BEG1+∠G1FD,
∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,
∵AB∥CD,
∴∠BEF+∠EFD=180°,
∴∠EG1F+∠G2=180°.
(2)如图2所示,猜想:∠EGF=90°;证明:由结论(1)得∠EGF=∠BEG+∠GFD,
∵EG、FG分别平分∠BEF和∠EFD,
∴∠BEF=2∠BEG,∠EFD=2∠GFD,
∵BE∥CF,
∴∠BEF+∠EFD=180°,
∴2∠BEG+2∠GFD=180°,
∴∠BEG+∠GFD=90°,
∵∠EGF=∠BEG+∠GFD,
∴∠EGF=90°;
(3)证明:如图3,过点G1作G1H∥AB,

∵AB∥CD,∴G1H∥CD,
由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,
∴∠3=∠G2FD,
∵FG2平分∠EFD,
∴∠4=∠G2FD,
∵∠1=∠2,
∴∠G2=∠2+∠4,
∵∠EG1F=∠BEG1+∠G1FD,
∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,
∵AB∥CD,
∴∠BEF+∠EFD=180°,
∴∠EG1F+∠G2=180°.
看了 阅读材料(1),并利用(1)...的网友还看了以下:
如图所示.用一条线把所有点连接起来.注:只能横竖连,不能斜着连.说清楚点:1、只能横竖连,不能斜着连 2020-03-30 …
试求点p(0,1,1)与Q(-1,1,2)的连线上一点R,使点A(1,0,1)与R的连线垂直于PQ. 2020-03-31 …
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点, 2020-05-13 …
平面坐标系有几点,连接各点,在连接点G和点D,得一图形,求图形的面积平面的点:A(-10,1),B 2020-05-23 …
1.有一个凸八边形,将这8个点中任意2个点之间连线段,已知任意三条线段都没交于一点,请问所形成的图 2020-07-14 …
如图1已知在圆O中,点C为劣弧AB的中点,连接AC并延长至D,使CD=CA,连接DB并延长交圆O如 2020-07-31 …
我们知道3个点连成线段的条数是:1+2=3条4个点连成线段的条数是:1+2+3=6条5个点连成线段的 2020-11-19 …
我们知道3个点连成线段的条数是:1+2=3条4个点连成线段的条数是:1+2+3=6条5个点连成线段的 2020-11-19 …
急微分函数f(x)=|x-1|()A在点x=1处连续可导B在点x=1处不连续C在点x=0处连续可导D 2020-12-12 …
初三几何综合在RT△ABC中,∠ACB=90°,tan∠BAC=1/2,点D在边AC上,不与A,C重 2021-02-04 …