早教吧作业答案频道 -->数学-->
已知二次函数y=x2+mx+m-5(m是常数).(1)求证:不论m为何值,该函数的图象与x轴一定有两公共点;(2)若该二次函数的图象过点(0,-3),则将函数图象沿x轴怎样平移能使抛物线过原点
题目详情
已知二次函数y=x2+mx+m-5(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴一定有两公共点;
(2)若该二次函数的图象过点(0,-3),则将函数图象沿x轴怎样平移能使抛物线过原点?
(1)求证:不论m为何值,该函数的图象与x轴一定有两公共点;
(2)若该二次函数的图象过点(0,-3),则将函数图象沿x轴怎样平移能使抛物线过原点?
▼优质解答
答案和解析
(1)令y=0得关于x的一元二次方程:x2+mx+m-5=0,则△=b2-4ac=m2-4(m-5)=m2-4m+20=(m-2)2+16.
∵不论m为何值,(m-2)2≥0,
∴(m-2)2+16>0.
∴不论m为何值,一元二次方程x2+mx+m-5=0一定有两个不相等的实数根,
∴不论m为何值,该函数的图象与x轴一定有两公共点.
(2)∵函数图象过点(0,-3),
∴m-5=-3,m=2,
∴二次函数表达式为y=x2+2x-3,
∵令y=0得:x2+2x-3=0解得:x1=1,x2=-3.
∴函数的图象与x轴的两个交点为:(1,0)和(-3,0).
∴将函数图象沿x 轴向右平移3个单位或向左平移1个单位就能使抛物线过原点.
∵不论m为何值,(m-2)2≥0,
∴(m-2)2+16>0.
∴不论m为何值,一元二次方程x2+mx+m-5=0一定有两个不相等的实数根,
∴不论m为何值,该函数的图象与x轴一定有两公共点.
(2)∵函数图象过点(0,-3),
∴m-5=-3,m=2,
∴二次函数表达式为y=x2+2x-3,
∵令y=0得:x2+2x-3=0解得:x1=1,x2=-3.
∴函数的图象与x轴的两个交点为:(1,0)和(-3,0).
∴将函数图象沿x 轴向右平移3个单位或向左平移1个单位就能使抛物线过原点.
看了 已知二次函数y=x2+mx+...的网友还看了以下:
如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且 2020-04-27 …
做物体受力分析图时需要将物体看作质点单拿出来做受力分析图,而作摩擦力示意图时则画在原图物体中心处, 2020-05-21 …
如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图.已知长方体货厢的高度BC为5米,tanA= 2020-07-06 …
如图,一段抛物线y=-x2+4x(0≤x≤4),记为C1,它与x轴交于点O、A1;将C1绕点A1旋 2020-07-08 …
如图,抛物线y=-x2-2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关 2020-07-09 …
如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平移,记平移后的抛物线为C,其顶 2020-07-13 …
如图,一段抛物线:y=x(x-2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1 2020-07-18 …
如图,直线y=x+b经过点B(-,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移 2020-07-20 …
如图,直线y=x+b经过点B(-,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移 2020-07-20 …
已知:如图,抛物线l1:y=13(x-m)2+n(m>0)的顶点为A,与y轴交于点B,将抛物线l1绕 2020-11-27 …