早教吧作业答案频道 -->其他-->
如图,一段抛物线:y=x(x-2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,直至得C10.(1)请
题目详情
如图,一段抛物线:y=x(x-2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,直至得C10.
(1)请写出抛物线C2的解析式:______;
(2)若P(19,a)在第10段抛物线C10上,则a=______.

(1)请写出抛物线C2的解析式:______;
(2)若P(19,a)在第10段抛物线C10上,则a=______.

▼优质解答
答案和解析
(1)∵一段抛物线:y=x(x-2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,
∴C1,过(0,0),(2,0)两点,
∴物线C2的解析式二次项系数为:-1,且过点(2,0),(4,0),
∴y=-(x-2)(x-4);
故答案为:y=-(x-2)(x-4);
(2)∵一段抛物线:y=-x(x-2)(0≤x≤2),
∴图象与x轴交点坐标为:(0,0),(2,0),
∵将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C10.
∴C10的与x轴的交点横坐标为(18,0),(20,0),且图象在x轴上方,
∴C10的解析式为:y10=-(x-18)(x-20),
当x=19时,y=-(19-18)×(19-20)=1.
故答案为:1.
∴C1,过(0,0),(2,0)两点,
∴物线C2的解析式二次项系数为:-1,且过点(2,0),(4,0),
∴y=-(x-2)(x-4);
故答案为:y=-(x-2)(x-4);
(2)∵一段抛物线:y=-x(x-2)(0≤x≤2),
∴图象与x轴交点坐标为:(0,0),(2,0),
∵将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C10.
∴C10的与x轴的交点横坐标为(18,0),(20,0),且图象在x轴上方,
∴C10的解析式为:y10=-(x-18)(x-20),
当x=19时,y=-(19-18)×(19-20)=1.
故答案为:1.
看了 如图,一段抛物线:y=x(x...的网友还看了以下:
急呃..会的做下1.已知函数f(x)的图像与函数h(x)=x+1/x+2的图像关于点A(0,1)对称 2020-03-31 …
已知抛物线y=1/2x²上的两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切 2020-05-16 …
f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x(1)h(x)=f'(x)/x为 2020-06-03 …
(2013•湖州)如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠ 2020-06-14 …
一点关于y=x轴对称点?点A(x,y)关于y=x轴的对称点是什么?点A(x,y)关于x=y轴的对称 2020-06-29 …
设函数f(x)在点x0及其邻近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)^2.a 2020-07-22 …
求导问题若f(x)在点x=a的邻域内有定义,且除去点x=a外恒有[f(x)-f(a)]/(x-a) 2020-07-31 …
阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a-b|.理 2020-08-03 …
如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分 2020-08-03 …
1.在平面直角坐标系内,有等腰三角形AOB,O是坐标原点,点A的坐标是(a,b),底边AB的中线在一 2020-12-25 …