早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.

题目详情
如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.
作业搜
(1)求证:BC=BC′;
(2)若AB=2,BC=1,求AE的长.
▼优质解答
答案和解析
作业搜 (1)连结AC、AC′,
∵四边形ABCD为矩形,
∴∠ABC=90°,即AB⊥CC′,
∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,
∴AC=AC′,
∴BC=BC′;

(2)∵四边形ABCD为矩形,
∴AD=BC,∠D=∠ABC′=90°,
∵BC=BC′,
∴BC′=AD′,
∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,
∴AD=AD′,
∴BC′=AD′,
在△AD′E与△C′BE中,
∠D′=∠ABC′
∠AED′=∠BEC′
AD′=BC′

∴△AD′E≌△C′BE,
∴BE=D′E,
设AE=x,则D′E=2-x,
在Rt△AD′E中,∠D′=90°,
由勾股定理,得x2-(2-x)2=1,
解得x=
5
4

∴AE=
5
4