早教吧作业答案频道 -->数学-->
如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如
题目详情
如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点,N为AD边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是______;
②请证明你的上述猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的结论.
▼优质解答
答案和解析
(1)①DE=EF;
②证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,
∴DN=EB=AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF;
(2)DE=EF,
证明:连接NE,在DA边上截取DN=EB,
∵四边形ABCD是正方形,DN=EB,
∴AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF.
②证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,
∴DN=EB=AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF;
(2)DE=EF,
证明:连接NE,在DA边上截取DN=EB,
∵四边形ABCD是正方形,DN=EB,
∴AN=AE,

∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF.
看了 如图1,2,四边形ABCD是...的网友还看了以下:
如图,在平面直角坐标系中,O为坐标原点,三角形OAB为等边三角形,点A的坐标是(4倍根3,0),点 2020-04-27 …
「初中几何题」图形是直角梯形ABCD.左上角是A点,左下为B点.∠A、∠B为直角.右上是D点,右下 2020-06-04 …
下图中三角形ABC的面积是18平方厘米,(一个小直角三角形,C为直角顶点,A为上方顶点,A为上方顶 2020-06-06 …
在三角形ABC与三角形A'B'C'中,AB=3,BC=5,A'B'=6,B'C'=10且角B=角B 2020-06-14 …
在等腰三角形ABC种,AB=AC,角A=40,把三角形ABC绕C点旋转,使B点落到AC边上的B‘点 2020-06-25 …
已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延 2020-06-25 …
已知直二面角a-l-b,点A属于面a,且AC垂直于l已知直二面角a-l-b,点A属于面a,AC垂直 2020-06-27 …
已知直二面角a-l-b,点A在面a内已知直二面角,a-l-b,点A属于面a,且AC垂直于l,垂足为 2020-06-27 …
如图,在三角形ABC中,角A70,角B90,点A关于BC的对称点是A‘,点B关于AC的对称点是B' 2020-07-17 …
(2011•周口模拟)如图所示,真空中O点有一点电荷,在它产生的电场中有a、b两点,a点的场强大小为 2020-11-12 …