早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当

题目详情
已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.
作业搜
(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;
(2)当△AEF是直角三角形时,求a、b的值;
(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
▼优质解答
答案和解析
(1)∵四边形ABCD是正方形,
∴∠BCF=∠DCE=90°
∵AC是正方形ABCD的对角线,
∴∠ACB=∠ACD=45°,
∴∠ACF=∠ACE,
∵∠EAF被对角线AC平分,
∴∠CAF=∠CAE,
在△ACF和△ACE中,
∠ACF=∠ACE
AC=AC
∠CAF=∠CAE

∴△ACF≌△ACE,
∴CE=CE,
∵CE=a,CF=b,
∴a=b,
∵△ACF≌△ACE,
∴∠AEF=∠AFE,
∵∠EAF=45°,
∴∠AEF=∠AFE=67.5°,
∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,
∵∠CAF=∠CAE=22.5°,
∴∠CAE=∠CEA,
∴CE=AC=4
2

即:a=b=4
2

(2)当△AEF是直角三角形时,
①当∠AFE=90°时,∴∠AFD+∠CFE=90°,
∵∠CEF+∠CFE=90°,
∴∠AFD=∠CEF
∵∠AFE=90°,∠EAF=45°,
∴∠AEF=45°=∠EAF
∴AF=EF,
在△ADF和△FCE中
∠ADF=∠FCE
∠AFD=∠CEF
AF=EF

∴△ADF≌△FCE,
∴FC=AD=4,CE=DF=CD+FC=8,
∴a=8,b=4
②当∠AEF=90°时,
同①的方法得,CF=4,CE=8,
∴a=4,b=8.
(3)ab=32,
理由:如图,
作业搜
∵AB∥CD
∴∠BAG=∠AFC,
∵∠BAC=45°,
∴∠BAG+∠CAF=45°,
∴∠AFC+∠CAF=45°,
∵∠AFC+∠AEC=180°-(∠CFE+∠CEF)-∠EAF=180°-90°-45°=45°,
∴∠CAF=∠AEC,
∵∠ACF=∠ACE=135°,
∴△ACF∽△ECA,
AC
EC
=
CF
AC

∴EC×CF=AC2=2AB2=32
∴ab=32.