早教吧作业答案频道 -->数学-->
已知函数f(x)=ax^2+bx+c满足f(1)=0,且a>b>c(1)求c/a的取值范围;(2)设该函数图像交x轴于A、B两点,求|AB|的取值范围.越详细越好,最好一步也不要省
题目详情
已知函数f(x)=ax^2+bx+c满足f(1)=0,且a>b>c
(1)求c/a的取值范围;
(2)设该函数图像交x轴于A、B两点,求|AB|的取值范围.
越详细越好,最好一步也不要省
(1)求c/a的取值范围;
(2)设该函数图像交x轴于A、B两点,求|AB|的取值范围.
越详细越好,最好一步也不要省
▼优质解答
答案和解析
由题意f(1)=0→a+b+c=0 .&
第一步,判定c的取值范围
c≥0,则 a+b+c>c≥0 与&式矛盾,所以 必有c<0 此时 a>0(否则a+b+c<0)
<1> 0=a+b+c>a+2c 所以 -2c>a -2 0=a+b+c<2a+c 所以 -c<2a -1/2>a/c
综上 a/c ∈ (-1/2,-2)
<2> 不妨设A点就是(1,0),B:(x1,0) 由于a>0,c<0 必有x1<0
|AB| = 1-x1
由于A,B是f(X)零点,所以
a+b+c = 0 (b=-a-c)
ax1^2+bx1+c= 0 两式相减 a(1-x1^2)+b(1-x1)=(1-x1)[a(1+x1)+b]=0
x1<0,1-x1>0 所以必有 a(1+x1)=-b -x1=1+b/a=1-(a+c)/a=-c/a
所以 |AB|=1-x1 = 1-c/a
c/a ∈(-1/2,-2) |AB|=1-x1 = 1-c/a ∈(3/2,3)
解答完毕
第一步,判定c的取值范围
c≥0,则 a+b+c>c≥0 与&式矛盾,所以 必有c<0 此时 a>0(否则a+b+c<0)
<1> 0=a+b+c>a+2c 所以 -2c>a -2 0=a+b+c<2a+c 所以 -c<2a -1/2>a/c
综上 a/c ∈ (-1/2,-2)
<2> 不妨设A点就是(1,0),B:(x1,0) 由于a>0,c<0 必有x1<0
|AB| = 1-x1
由于A,B是f(X)零点,所以
a+b+c = 0 (b=-a-c)
ax1^2+bx1+c= 0 两式相减 a(1-x1^2)+b(1-x1)=(1-x1)[a(1+x1)+b]=0
x1<0,1-x1>0 所以必有 a(1+x1)=-b -x1=1+b/a=1-(a+c)/a=-c/a
所以 |AB|=1-x1 = 1-c/a
c/a ∈(-1/2,-2) |AB|=1-x1 = 1-c/a ∈(3/2,3)
解答完毕
看了 已知函数f(x)=ax^2+...的网友还看了以下:
已知a是3个正数a.b.c中最大的数,且a/b=c/d,则a+d于c+d的大小关系是?(则a+d于c 2020-03-31 …
已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)( 2020-05-15 …
在平面直角坐标系xOy中,已知椭圆C:,如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A 2020-06-08 …
静置于光滑水平面上的两相同滑块A与B紧靠在一起,长度均为L=1.25m,小滑块C静置于A的左端.已 2020-06-12 …
(1)关于C语言中数的表示,以下叙述正确的是().A)只有整型数在允许范围内能精确无误的表示,实型 2020-07-16 …
关于x的方程x+1/x=c+1/c的解是x1=c,x2=1/c;x-1/x=c-c/1(即x+(- 2020-07-21 …
lim趋近于无穷((x+c)/(x-c))^(x/2)=3,求clim(x→∞)[(x+c)/(x 2020-07-26 …
有个性的队名.关于C.急用!求一个有个性的队名.关于C.还有口号.要根据队名的设计来创新.关于C!1 2020-11-02 …
已知二次函数y=ax^2+bx+c的图像与Y轴交于Q(0,2),与x轴交于A,B两点,顶点P在x轴上 2020-11-21 …
人体正常体温为°C,一般体温表的测量范围是°C到°C.用两支准确完好的体温表同时测同一病人的体温,一 2020-11-27 …