早教吧作业答案频道 -->其他-->
(2014•盘锦)如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°
题目详情
(2014•盘锦)如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.

(1)求抛物线的解析式;
(2)求点C的坐标(用含m的代数式表示);
(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.

(1)求抛物线的解析式;
(2)求点C的坐标(用含m的代数式表示);
(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.
▼优质解答
答案和解析
(1)由题意可知:A(4,-4),
∵抛物线y=ax2+bx+c经过原点、点E(8,0 )和A(4,-4),则
,
解得:
.
∴抛物线的解析式为:y=
x2-2x.
(2)∵∠APC=90°,
∴∠CPG=∠PAB,
∴△PCG≌△APB,
∴PG=AB,CG=PB,
∵P(m,0),AB=4,PB=4-m,
∴G(4+m,0),
∴C(4+m,4-m),
(3)把x=4+m代入y=
x2-2x得:y=
m2-4
∴D(4+m,
m2-4),
∵以点A、B、C、D为顶点的四边形是平行四边形,
∴CD=AB=4,
∴(4-m)-(
m2-4)=4,
解得:m=-2+2
,m=-2-2
(舍去),
∴P(-2+2
∵抛物线y=ax2+bx+c经过原点、点E(8,0 )和A(4,-4),则
|
解得:
|
∴抛物线的解析式为:y=
| 1 |
| 4 |
(2)∵∠APC=90°,
∴∠CPG=∠PAB,
∴△PCG≌△APB,
∴PG=AB,CG=PB,
∵P(m,0),AB=4,PB=4-m,
∴G(4+m,0),
∴C(4+m,4-m),
(3)把x=4+m代入y=
| 1 |
| 4 |
| 1 |
| 4 |
∴D(4+m,
| 1 |
| 4 |
∵以点A、B、C、D为顶点的四边形是平行四边形,
∴CD=AB=4,
∴(4-m)-(
| 1 |
| 4 |
解得:m=-2+2
| 5 |
| 5 |
∴P(-2+2
|
看了 (2014•盘锦)如图,抛物...的网友还看了以下:
解方程:x+6/x+5-x+6/x+7-x+9/x+8+x+10/x+9=0 2020-06-04 …
已知f(x)=3的2x次方,则方程f(x)-9=0的解集是 函数y=a的x+5次方+1(a>0,且 2020-06-27 …
Mathematica解方程我要Mathematica同时解一些方程,并显示出所有根例如同时解x- 2020-07-31 …
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+㏑x 2020-08-01 …
求y=2e^x+e^-x的极值//为什么两边取自然对数?由y=2e^x+e^(-x)对y求导:y′ 2020-08-02 …
关于X的方程,10Kx的三次方—X—9=0有一个根是-1,则k=()关于X的方程,10Kx的三次方 2020-08-02 …
f(x)=e^(3x)+∫(上x下0)tf(x-t)dt,求f(x)要过程,答案是f=(1/8)e^ 2020-10-31 …
利用罗比达法则计算lim下面是x到0*(e^x-e^-x)/sinx,急 2020-11-07 …
利用判别式判断下列方程的根的情况:(1)2x的平方-3x-3/2=0(2)16x的平方-24x+9= 2020-12-05 …
问两道分段函数基础题,数学底子差啊……(20)在线1,已知f(x)=大括号x^2,X>0,e,X=0 2020-12-08 …
相关问答