早教吧作业答案频道 -->数学-->
试证明:f(x)在x>=0上二阶可导,f(0)=lim(x趋近于正无穷)f(x)=0且f"(x)+cosf'(x)=e^f(x),则f(x)=0,x>=0
题目详情
试证明:f(x)在x>=0上二阶可导,f(0)=lim(x趋近于正无穷)f(x)=0且f"(x)+cosf'(x)=e^f(x),则f(x)=0,x>=0
▼优质解答
答案和解析
f(0)=lim(x趋近于正无穷)f(x)=0 所以 x>=0时f(x) 有界
若f(x)≠0,若存在f(x)>0 ,则必存在最大值,设在x=a处取到最大值
则有f'(a)=0 f''(a)0 且 f''(b)+cosf'(b)=e^(f(b))
那么f''(b)=e^(f(a))-1
若f(x)≠0,若存在f(x)>0 ,则必存在最大值,设在x=a处取到最大值
则有f'(a)=0 f''(a)0 且 f''(b)+cosf'(b)=e^(f(b))
那么f''(b)=e^(f(a))-1
看了 试证明:f(x)在x>=0上...的网友还看了以下:
f(x)在0,正无穷)上连续,在(0,正无穷)上可导并满足f(0)=0,f(x)>=0,f(x)= 2020-05-14 …
计算∫ (下标不会打)y^2dx+z^2dy+x^2dz ,其中(下标)是球面x^2+y^2+z^ 2020-05-16 …
已知函数fx是定义在r上的奇函数f(1)=0,xf'(x)-f(x)/x^2>0则f(x)>0的解 2020-06-08 …
7.x>0,y>0,a=x+y,b=sqrt(x^2+xy+y^2),c=msqrt(xy),求是 2020-06-12 …
A坐标1/2,2,B坐标2,1/2,P坐标x,0,在X正半轴上运动,当AP与BP差最大时,P坐标 2020-06-14 …
试证明:f(x)在x>=0上二阶可导,f(0)=lim(x趋近于正无穷)f(x)=0且f"(x)+ 2020-06-18 …
一个多元函数F(X)在点x*附近偏导数连续,则该点为极小点的充分条件是一个多元函数F(X)在点x* 2020-06-20 …
高数方程问题·F(X)和G(X)为奇函数而且可逆H(X)=cosf(X)+SIN(F(X)G(X) 2020-07-08 …
设f(x)在x=0可导,且x趋近于1时,[(1+(1—cosf(x))/sinx]^1/x=e,求 2020-07-16 …
导数求值问题f{X}=ax的立方+bx平方-3X在x=正负1处有极值{1求ab过A016做y=f{X 2021-02-16 …