早教吧作业答案频道 -->英语-->
用gethelpfrom、befriendlyto、befarfrom、feesbwithsth、beafraidof、fightwith、bemorriedabout造句(造小学水平的句子!
题目详情
用get help from 、be friendly to、be far from、fee
sb with sth、be afraid of、fight with、be morried about造句 (造小学水平的句子!
sb with sth、be afraid of、fight with、be morried about造句 (造小学水平的句子!
▼优质解答
答案和解析
He gets help from his teacher.
My teacher is friendly with us.
My house is far from the school.
She is always afraid of dogs.
Don't fight with your classmates!
He is sick.His mother is worried about him.
My teacher is friendly with us.
My house is far from the school.
She is always afraid of dogs.
Don't fight with your classmates!
He is sick.His mother is worried about him.
看了 用gethelpfrom、b...的网友还看了以下:
()()r()()s()e()()()a()()e()r()()s()e()e()a()()e()r 2020-03-31 …
A是n阶矩阵,r(A+E)+r(A-E)=n,证明A^2=E稍微具体一点行不。 2020-04-05 …
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
设A为n阶矩阵有A的2次方等于E.求证r(A+E)+r(A-E)=n. 2020-05-14 …
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n, 2020-05-15 …
设A为n*n矩阵,证明:如果A^2=E,那么R(A+E)+R(A-E)=n 2020-05-15 …
r e r d a a e r d m组成一个什么单词 2020-05-16 …
线性代数求解有n阶矩阵A,满足(A+E)(A-E)=0,怎么得出R(A+E)+R(A-E)≤n不懂 2020-06-28 …
在球坐标系中,已知矢量A=e(r)a+e(θ)b+e(φ)c,其中a、b和c均为常数.(1)问矢量 2020-07-21 …
设A是2阶方阵,且A^2=E,A不等于±E,证明:r(A+E)=r(A-E)=1 2020-11-02 …