早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f'(0)=1,则x趋向0时lim(f(3t)-f(-t))/2t=

题目详情
设f'(0)=1,则x趋向0时lim(f(3t)-f(-t))/2t =
▼优质解答
答案和解析
lim(x->0){[f(3t)-f(-t)]/(2t)}
=lim(x->0){[(3/2)(f(3t)-f(0))/(3t)]+[(1/2)(f(-t)-f(0))/(-t)]}
=(3/2)lim(x->0)[f(3t)-f(0))/(3t)]+(1/2)lim(x->0)[f(-t)-f(0))/(-t)]
=(3/2)f'(0)+(1/2)f'(0)
=(3/2)*1+(1/2)*1
=2.