早教吧作业答案频道 -->数学-->
(1)求证:△AGE≌△DAC;(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.
题目详情
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.
▼优质解答
答案和解析
分析:(1)根据已知等边三角形的性质可推出△ADG是等边三角形,从而再利用SAS判定△AGE≌△DAC;
(2)连接AF,由已知可得四边形EFCD是平行四边形,从而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,从而可得到EF=AE,∠AEF=60°,所以△AEF为等边三角形.
(1)证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°.
∵EG∥BC,
∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°.
∴△ADG是等边三角形.
∴AD=DG=AG.
∵DE=DB,
∴EG=AB.
∴GE=AC.
∵EG=AB=CA,
∴∠AGE=∠DAC=60°,AG=DA,
∴△AGE≌△DAC.
△AEF为等边三角形.
证明:如图,连接AF,
∵DG∥BC,EF∥DC,
∴四边形EFCD是平行四边形,
∴EF=CD,∠DEF=∠DCF,
由(1)知△AGE≌△DAC,
∴AE=CD,∠AED=∠ACD.
∵EF=CD=AE,∠AED+∠DEF=∠ACD+∠DCB=60°,
∴△AEF为等边三角形.
(2)连接AF,由已知可得四边形EFCD是平行四边形,从而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,从而可得到EF=AE,∠AEF=60°,所以△AEF为等边三角形.
(1)证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°.
∵EG∥BC,
∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°.
∴△ADG是等边三角形.
∴AD=DG=AG.
∵DE=DB,
∴EG=AB.
∴GE=AC.
∵EG=AB=CA,
∴∠AGE=∠DAC=60°,AG=DA,
∴△AGE≌△DAC.
△AEF为等边三角形.
证明:如图,连接AF,
∵DG∥BC,EF∥DC,
∴四边形EFCD是平行四边形,
∴EF=CD,∠DEF=∠DCF,
由(1)知△AGE≌△DAC,
∴AE=CD,∠AED=∠ACD.
∵EF=CD=AE,∠AED+∠DEF=∠ACD+∠DCB=60°,
∴△AEF为等边三角形.
看了 (1)求证:△AGE≌△DA...的网友还看了以下:
操作:在△ABC中,AC=BC=2,∠C=90°.将一块足够大的等腰直角三角板的直角顶点放在斜边A 2020-04-09 …
如图,P为⊙O外一点,PA切⊙O于点A.过点P的任一直线交⊙O于B、C两点,连接AB、AC,连接P 2020-06-13 …
如图,已知直线l分别与x轴、y轴交于A、B两点,与双曲线(a≠0,x>0)分别交于D、E两点.(1 2020-07-14 …
如图,在直角坐标系中,以点A(,0)为圆心,以为半径的圆与x轴交于B、C两点,与y轴交于D、E两点 2020-07-22 …
把某一直角玻璃棱镜AOB平放在坐标纸上,如图所示,用一细束红光掠过纸面从C点入射,经AO面反射和折 2020-07-30 …
已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y轴,建立如图所 2020-07-30 …
如图所示,D、E分别是△ABC的边AC、BC上的点,平面α经过D、E两点.(1)求作直线AB与平面 2020-07-31 …
在平面直角坐标系中,已知椭圆的离心率为,且点在椭圆上.(1)求椭圆的方程;(2)设椭圆,为椭圆上任 2020-08-01 …
(2014•闵行区三模)已知:如图,在直角坐标平面xOy中,O为原点,点A、C分别在x轴、y轴的正 2020-08-02 …
如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接 2020-12-25 …