早教吧作业答案频道 -->其他-->
已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y轴,建立如图所示的平面直角坐标系,直线l经过C、E两点.(1)求直线l的函数表达式;(2)如图,将矩形OABC中,将△C
题目详情
已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y轴,建立如图所示的平面直角坐标系,直线l经过C、E两点.
(1)求直线l的函数表达式;
(2)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形OABC内部,延长CF交AB于G点.证明:GF=GA;
(3)由上面的条件,求四边形AGFE的面积?

(1)求直线l的函数表达式;
(2)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形OABC内部,延长CF交AB于G点.证明:GF=GA;
(3)由上面的条件,求四边形AGFE的面积?

▼优质解答
答案和解析
(1)设直线l的解析式y=kx+b(k≠0).
∵矩形OABC的边长OA=4,AB=3,E是OA的中点,
∴OC=AB=3,OE=2,
∴E(2,0),C(0,3).
∴
,
解得,
,
∴直线l的解析式y=-
x+3;
(2)证明:如图2,连接EG.
∵四边形OABC是矩形,
∴∠COA=∠OAB=90°.
又根据折叠是性质得到∠COE=∠CFE=90°,OE=EF,
∴∠EFG=∠EAG=90°.
又∵E是OA的中点,
∴OE=EF,
∴EF=EA,
∴在Rt△EFG和Rt△EAG中,
,
∴Rt△EFG≌Rt△EAG(HL),
∴GF=GA;
(3)由(2)知,GF=GA,根据折叠的性质知OC=CF=3.
∵BG=AB-AG=3-AG,CG=CF+GF=3+GA,AE=2,
∴在直角△CBG中,由勾股定理得:CG2=BC2+BG2,即(3+AG)2=(3-AG)2+42,
解得,AG=
.
∵由(1)知,Rt△EFG≌Rt△EAG,
∴SRt△EFG=SRt△EAG,
∴S四边形AGFE=2SRt△EAG=2×
AE•AG=2×
×2×

∵矩形OABC的边长OA=4,AB=3,E是OA的中点,
∴OC=AB=3,OE=2,
∴E(2,0),C(0,3).
∴
|
解得,
|
∴直线l的解析式y=-
3 |
2 |
(2)证明:如图2,连接EG.
∵四边形OABC是矩形,
∴∠COA=∠OAB=90°.
又根据折叠是性质得到∠COE=∠CFE=90°,OE=EF,
∴∠EFG=∠EAG=90°.
又∵E是OA的中点,
∴OE=EF,
∴EF=EA,
∴在Rt△EFG和Rt△EAG中,
|
∴Rt△EFG≌Rt△EAG(HL),
∴GF=GA;
(3)由(2)知,GF=GA,根据折叠的性质知OC=CF=3.
∵BG=AB-AG=3-AG,CG=CF+GF=3+GA,AE=2,
∴在直角△CBG中,由勾股定理得:CG2=BC2+BG2,即(3+AG)2=(3-AG)2+42,
解得,AG=
4 |
3 |
∵由(1)知,Rt△EFG≌Rt△EAG,
∴SRt△EFG=SRt△EAG,
∴S四边形AGFE=2SRt△EAG=2×
1 |
2 |
1 |
2 |
作业帮用户
2017-09-19
![]() ![]() |
看了 已知矩形OABC的边长OA=...的网友还看了以下:
如果直线a、b是异面直线,点A、C在直线a上,B、D在直线b上,那么直线AB和CD一定是()A.平 2020-06-03 …
抛物线与直线交点问题1)已知抛物线y=2x平方,直线y=kx+b经过点(2,6).若直线和抛物线只 2020-06-05 …
已知a,b是异面直线,直线c∥a,那么直线c与b()A.一定是相交直线B.一定是异面直线C.不可能 2020-06-15 …
已知直线a,b,c,d,给出以下四个命题:①若a∥b,a⊥c,则b⊥c;②若a⊥c,b⊥c,则a∥ 2020-07-14 …
画出并量出上右图中A点到已知直线的距离.过直线上的B点画出这条直线的垂线,再过A点画出已知直线的平 2020-07-20 …
在弹钢琴中加线上的B音和D音应该用哪个手指弹? 2020-07-24 …
如果直线a、b是异面直线,点A、C在直线a上,B、D在直线b上,那么直线AB和CD一定是()A.平 2020-07-25 …
如果直线a、b是异面直线,点A、C在直线a上,B、D在直线b上,那么直线AB和CD一定是()A.平 2020-08-02 …
已知a,b是异面直线,a,b∈α,c,d∈β,求证:ac,bd是异面直线.没写太明白,已知a,b是 2020-08-02 …
如图1,通电线圈B端与磁铁N极相吸,则A端是极.(选填“N”、“S”)请在图2中以线代替导线,连接线 2020-11-01 …