早教吧作业答案频道 -->数学-->
在直线x-y+9=0上任取一点P,过点P以椭圆x^/12+y^/3=1的焦点为焦点做椭圆1)P点在何处时,所求椭圆的长轴最短2)求长轴最短时的椭圆方程椭圆方程中的x和y是平方
题目详情
在直线x-y+9=0上任取一点P,过点P以椭圆x^/12+y^/3=1的焦点为焦点做椭圆
1)P点在何处时,所求椭圆的长轴最短
2)求长轴最短时的椭圆方程
椭圆方程中的x 和 y 是平方
1)P点在何处时,所求椭圆的长轴最短
2)求长轴最短时的椭圆方程
椭圆方程中的x 和 y 是平方
▼优质解答
答案和解析
由题意知:c=3.
故可设椭圆方程为:
x^2/a^2+y^2/(a^2-9)=1 (a>3)
联立方程组:
x^2/a^2+y^2/(a^2-9)=1
x-y+9=0
消去y得:
(2a^2-9)x^2+18a^2x+90a^2-a^4=0.*
∵直线与椭圆有公共点
∴△=(18a^2)^2-4(2a^2-9)(80a^2-a^4)≥0,
解得a^2≤9或a^2≥45
∵a>3
∴a^2≥45,即a≥3√5
则长轴最短为2a=6√5 ,
所求椭圆方程为x^2/a^2+y^2/(a^2-9)=1
当a=3 时,
由方程*可求得
x=-5,
代入直线l方程可求得y=6,
即点P坐标为(-5,4).
故可设椭圆方程为:
x^2/a^2+y^2/(a^2-9)=1 (a>3)
联立方程组:
x^2/a^2+y^2/(a^2-9)=1
x-y+9=0
消去y得:
(2a^2-9)x^2+18a^2x+90a^2-a^4=0.*
∵直线与椭圆有公共点
∴△=(18a^2)^2-4(2a^2-9)(80a^2-a^4)≥0,
解得a^2≤9或a^2≥45
∵a>3
∴a^2≥45,即a≥3√5
则长轴最短为2a=6√5 ,
所求椭圆方程为x^2/a^2+y^2/(a^2-9)=1
当a=3 时,
由方程*可求得
x=-5,
代入直线l方程可求得y=6,
即点P坐标为(-5,4).
看了 在直线x-y+9=0上任取一...的网友还看了以下:
圆心为椭圆顶点,半径为椭圆半长轴的圆与椭圆相交,假设圆心为左顶点,圆方程(x+a)2+y2=a2, 2020-05-23 …
已知椭圆C:x2a2+y2b2=1(a>b>0)过点(3,32),离心率e=12,若点M(x0,y 2020-06-21 …
(2014•长春模拟)如图F1、F2为椭圆C:x2a2+y2b2=1的左、右焦点,D、E是椭圆的两 2020-06-21 …
如图,点是椭圆的一个顶点,的长轴是圆的直径,、是过点且互相垂直的两条直线,其中交圆于、两点,交椭圆 2020-06-23 …
如图,F1,F2为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,D,E是椭圆的两个顶点 2020-07-09 …
、萝卜块根有长形的、圆形的、椭圆形的,各种不同类型的杂交产生了以下的结果(长形为显性):(1)长形 2020-07-18 …
已知圆,若焦点在轴上的椭圆过点,且其长轴长等于圆的直径.(1)求椭圆的方程;(2)过点作两条互相垂 2020-07-20 …
椭圆方程已知椭圆x^2/a^2+y^2/b^2=1(a>b>0,且b∈Z)的焦点为F(√5,0), 2020-07-31 …
已知圆O:x2+y2=4,若焦点在x轴上的椭圆过点P(0,-1),且其长轴长等于圆O的直径,过点P作 2020-12-01 …
双曲线离心率怎么理解不用计算公式,例如椭圆两焦点间距离和长轴长度的比值.即某一椭圆轨道与理想圆环的偏 2021-01-02 …