早教吧作业答案频道 -->数学-->
在直线x-y+9=0上任取一点P,过点P以椭圆x^/12+y^/3=1的焦点为焦点做椭圆1)P点在何处时,所求椭圆的长轴最短2)求长轴最短时的椭圆方程椭圆方程中的x和y是平方
题目详情
在直线x-y+9=0上任取一点P,过点P以椭圆x^/12+y^/3=1的焦点为焦点做椭圆
1)P点在何处时,所求椭圆的长轴最短
2)求长轴最短时的椭圆方程
椭圆方程中的x 和 y 是平方
1)P点在何处时,所求椭圆的长轴最短
2)求长轴最短时的椭圆方程
椭圆方程中的x 和 y 是平方
▼优质解答
答案和解析
由题意知:c=3.
故可设椭圆方程为:
x^2/a^2+y^2/(a^2-9)=1 (a>3)
联立方程组:
x^2/a^2+y^2/(a^2-9)=1
x-y+9=0
消去y得:
(2a^2-9)x^2+18a^2x+90a^2-a^4=0.*
∵直线与椭圆有公共点
∴△=(18a^2)^2-4(2a^2-9)(80a^2-a^4)≥0,
解得a^2≤9或a^2≥45
∵a>3
∴a^2≥45,即a≥3√5
则长轴最短为2a=6√5 ,
所求椭圆方程为x^2/a^2+y^2/(a^2-9)=1
当a=3 时,
由方程*可求得
x=-5,
代入直线l方程可求得y=6,
即点P坐标为(-5,4).
故可设椭圆方程为:
x^2/a^2+y^2/(a^2-9)=1 (a>3)
联立方程组:
x^2/a^2+y^2/(a^2-9)=1
x-y+9=0
消去y得:
(2a^2-9)x^2+18a^2x+90a^2-a^4=0.*
∵直线与椭圆有公共点
∴△=(18a^2)^2-4(2a^2-9)(80a^2-a^4)≥0,
解得a^2≤9或a^2≥45
∵a>3
∴a^2≥45,即a≥3√5
则长轴最短为2a=6√5 ,
所求椭圆方程为x^2/a^2+y^2/(a^2-9)=1
当a=3 时,
由方程*可求得
x=-5,
代入直线l方程可求得y=6,
即点P坐标为(-5,4).
看了 在直线x-y+9=0上任取一...的网友还看了以下:
已知椭圆中心在原点,焦点在坐标轴上,焦距为,另一双曲线与椭圆有公共焦点,且椭圆的半长轴长比双曲线的 2020-05-13 …
椭圆的中心在原点,焦点在X轴,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线 2020-05-15 …
已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,焦距为2,并且椭圆C上...已知椭圆C的中心在 2020-05-15 …
已知椭圆的中心在坐标原点O,焦点焦距为2,且椭圆的短轴两端点和两焦点所组成的四边形为正方形,1求椭 2020-05-15 …
1.设F1,F2分别为椭圆的左,右两个焦点. 若椭圆C上的点到F1,F2两点的距离之和等于4,写出 2020-05-16 …
已知抛物线y2=8(x-2)的焦点和准线分别是一椭圆的焦点和对应的准线,求椭圆短轴端点的轨迹方程已 2020-05-19 …
已知椭圆的对称轴是坐标轴,以短轴的一个端点和两焦点为顶点的三角形是正三角行,且焦点到椭圆的最短距离 2020-06-03 …
已知椭圆的焦点在x轴上,短轴长为4,离心率为根号下5/5.(1)求椭圆的标准方程(2),若直线已知 2020-07-31 …
100分1.椭圆的中心在原点,焦点在x轴上,一条准线方程为x=-25/4,焦点到相应的准线的距离为 2020-07-31 …
我没学过数学应付考试关于椭圆长轴椭圆的焦距是6,椭圆上一点到两个焦点之和是10,写出这个椭圆的标准方 2021-01-09 …