早教吧作业答案频道 -->数学-->
如图①,已知正方形ABDE和正方形AGFC中,点B、A、C在一条直线上,点G在边AE上,连接BG、EC.(1)求证:BG=EC,BG⊥EC.(2)当正方形AGFC绕A点旋转到B、A、C三点不在同一条直线上时(如图②、
题目详情
如图①,已知正方形ABDE和正方形AGFC中,点B、A、C在一条直线上,点G在边AE上,连接BG、EC.
(1)求证:BG=EC,BG⊥EC.
(2)当正方形AGFC绕A点旋转到B、A、C三点不在同一条直线上时(如图②、图③),线段BG、EC又有怎样的关系?请写出你的猜想,并选择一种情况加以证明.

(1)求证:BG=EC,BG⊥EC.
(2)当正方形AGFC绕A点旋转到B、A、C三点不在同一条直线上时(如图②、图③),线段BG、EC又有怎样的关系?请写出你的猜想,并选择一种情况加以证明.

▼优质解答
答案和解析
(1)证明:在正方形ABDE和正方形AGFC中,AB=AE,AC=AG,∠BAE=∠GAC=90°,
在△ABG和△AEC中,
,
∴△ABG≌△AEC(SAS),
∴BG=EC,∠ABG=∠AEC,
设BG的延长线交EC于H,
∵∠AEC+∠ACE=90°,
∴∠ABG+∠ACE=90°,
∴∠BHC=180°-90°=90°,
∴BG⊥EC;
(2)BG=EC,BG⊥EC.
证明:图②,在正方形ABDE和正方形AGFC中,AB=AE,AC=AG,∠BAE=∠GAC=90°,
∴∠BAE-∠EAG=∠GAC-∠EAG,
即∠BAG=∠EAC,
在△ABG和△AEC中,
,
∴△ABG≌△AEC(SAS),
∴BG=EC,∠ABG=∠AEC,
设BG的延长线交EC于H,
由三角形的内角和定理得,∠BHE=∠BAE=90°,
∴BG⊥EC;

图③,在正方形ABDE和正方形AGFC中,AB=AE,AC=AG,∠BAE=∠GAC=90°,
∴∠BAE+∠EAG=∠GAC+∠EAG,
即∠BAG=∠EAC,
在△ABG和△AEC中,
,
∴△ABG≌△AEC(SAS),
∴BG=EC,∠ABG=∠AEC,
设BG的延长线交EC于H,
由三角形的内角和定理得,∠BHE=∠BAE=90°,
∴BG⊥EC.

在△ABG和△AEC中,
|
∴△ABG≌△AEC(SAS),
∴BG=EC,∠ABG=∠AEC,
设BG的延长线交EC于H,
∵∠AEC+∠ACE=90°,
∴∠ABG+∠ACE=90°,
∴∠BHC=180°-90°=90°,
∴BG⊥EC;
(2)BG=EC,BG⊥EC.
证明:图②,在正方形ABDE和正方形AGFC中,AB=AE,AC=AG,∠BAE=∠GAC=90°,
∴∠BAE-∠EAG=∠GAC-∠EAG,
即∠BAG=∠EAC,
在△ABG和△AEC中,
|
∴△ABG≌△AEC(SAS),
∴BG=EC,∠ABG=∠AEC,
设BG的延长线交EC于H,
由三角形的内角和定理得,∠BHE=∠BAE=90°,
∴BG⊥EC;

图③,在正方形ABDE和正方形AGFC中,AB=AE,AC=AG,∠BAE=∠GAC=90°,
∴∠BAE+∠EAG=∠GAC+∠EAG,
即∠BAG=∠EAC,
在△ABG和△AEC中,
|
∴△ABG≌△AEC(SAS),
∴BG=EC,∠ABG=∠AEC,
设BG的延长线交EC于H,
由三角形的内角和定理得,∠BHE=∠BAE=90°,
∴BG⊥EC.
看了 如图①,已知正方形ABDE和...的网友还看了以下:
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-04-05 …
若a,b,c均为整数,且|a-b|立方+|c-a|平方=1,求|a-c|+|c-b|+|b-a|的 2020-04-06 …
(8x的n+3方+x的n+2方)(3/4x的n次方+x的n-1方)(a-½)(a+1/3)-(a- 2020-05-14 …
哪位好心人帮我回答两道一元一次方程题1.若a,c,d是整数,b是正整数,且满足a+b=c,b+c= 2020-05-21 …
一道不等式的证明,老师打我错,可是我还是觉得我是对的是用柯西不等式的证明问题.已知a>0b>0c> 2020-05-22 …
1.若a-c=-2,c-b=-3,则代数式(a-b)[(a-c)的二次方-(a-c)(c-b)+( 2020-06-12 …
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-06-24 …
1.若a、b、c均为整数,且|a-b|的立方+|c-a|的平方=1,求|a-c|+|c-b|+|b 2020-07-09 …
a,b,c,d为实数,x^2+ax+b=0,x^2+cx+d=0的根的模都小于1,证明x^2+1/ 2020-07-19 …
如果四边形ABCD和四边形A'B'C'D'是位似图形,且位似比是K,下列成立的是()1,AC/A'C 2020-12-25 …