早教吧作业答案频道 -->数学-->
对a,b∈R,记max{a,b}={(这个个大括号)a,a≥b,b,a<b,函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是多少主要不懂a,a≥b,b,a<b,
题目详情
对a,b∈R,记max{a,b}={(这个个大括号)a,a≥b,
b,a<b,
函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是多少
主要不懂 a,a≥b,
b,a<b,
b,a<b,
函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是多少
主要不懂 a,a≥b,
b,a<b,
▼优质解答
答案和解析
当a≥b时,则式子max{a,b}=a,
当a<b,时,则式子max{a,b}=b,
max{a,b}是一个法则,这个法则反映出的意思就是:大括号中的数,谁大就要谁
所以要求f(x)=max{|x+1|,|x-2|}(x∈R)的最小值,其实就是比较在不同的x范围时,|x+1|和|x-2|大小,
这个时候画图比较直观(我画的图在下面,点开看看,绿的是|x+1|的图像,粉的是|x-2|的图像,根据法则,要两者中大的部分,所以f(x)的图像就是蓝线描出的部分,红点处即为f(x)的最小值)
求出此时(红点处)x=-1.5,f(x)=0.5,所以函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是0.5
当a<b,时,则式子max{a,b}=b,
max{a,b}是一个法则,这个法则反映出的意思就是:大括号中的数,谁大就要谁
所以要求f(x)=max{|x+1|,|x-2|}(x∈R)的最小值,其实就是比较在不同的x范围时,|x+1|和|x-2|大小,
这个时候画图比较直观(我画的图在下面,点开看看,绿的是|x+1|的图像,粉的是|x-2|的图像,根据法则,要两者中大的部分,所以f(x)的图像就是蓝线描出的部分,红点处即为f(x)的最小值)
求出此时(红点处)x=-1.5,f(x)=0.5,所以函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是0.5

看了 对a,b∈R,记max{a,...的网友还看了以下:
1、f(x)=xsinx+cosx,则f(-3)与f(2)的大小关系是?2、f(x)=x(x-1)( 2020-03-30 …
二次函数y=f(x)满足f(0)=1/2m和f(x+1)-f(x-1)=4x-2m,求F(X)的解 2020-05-20 …
设函数f(x)=xe^x,则A,x=1为f(x)的极大值点B,x=1为f(x)的极小值点C,x=- 2020-06-03 …
若函数f(x)=x-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b的x次方)于f 2020-06-06 …
函数(x)=x²-bx满足f(1+x)=f(1-x),且f(0)=3则f(b的x次方)与f(c的x 2020-06-06 …
f(x)>g(x)恒成立为什么要满足f(X)最小值大于g(x)的最大值f(x)与g(x)中的X可以 2020-06-14 …
已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的() 2020-06-27 …
已知二次函数F(x)=ax^2+bx,若函数f(x)的最小值为f(-1)=-1,F(x)=f(x) 2020-07-13 …
求解隐函数的问题为什么要这么做?1.已知f(2x+1)=x平方-2x,则f(3)=,实际上把x=1代 2021-01-04 …
f(x),g(x)是定义在[a,b]上的连续函数,则“f(x)的最大值小于g(x)的最小值”是“f( 2021-02-13 …