早教吧作业答案频道 -->数学-->
如图,在正方形ABCD中,AD=10,点E、F是正方形ABCD外的点,且AE=FC=6,BE=DF=8,则EF的长为()A.14B.16C.142D.143
题目详情
如图,在正方形ABCD中,AD=10,点E、F是正方形ABCD外的点,且AE=FC=6,BE=DF=8,则EF的长为( )
A. 14
B. 16
C. 142
D. 143
▼优质解答
答案和解析
延长EA交FD的延长线于点M,
∵四边形ABCD是正方形,
∴AB=BC=DC=AD=10,
∵AE=6,BE8,
∴AE2+BE2=AB2=100,
∴△AEB是直角三角形,
同理可证△CDF是直角三角形,
∴∠EAB=∠DCF,∠EBA=∠CDF,∠EAB+∠EBA=90°,∠CDF+∠FDC=90°,
∴∠EAB+∠CDF=90°
又∵∠EAB+∠MAD=90°,∠MDA+∠CDF=90°,
∴∠MAD+∠MDA=90°,
∴∠M=90°
∴△EMF是直角三角形,
∵∠EAB+∠MAD=90°,
∴∠EAB=∠MDA,
在△AEB和△DMA中,
,
∴△AEB≌△DMA,
∴AM=BE=8,MD=AE=6,
∴EM=MF=14,
∴EF=
=14
,
故选C.
延长EA交FD的延长线于点M,
∵四边形ABCD是正方形,
∴AB=BC=DC=AD=10,
∵AE=6,BE8,
∴AE2+BE2=AB2=100,

∴△AEB是直角三角形,
同理可证△CDF是直角三角形,
∴∠EAB=∠DCF,∠EBA=∠CDF,∠EAB+∠EBA=90°,∠CDF+∠FDC=90°,
∴∠EAB+∠CDF=90°
又∵∠EAB+∠MAD=90°,∠MDA+∠CDF=90°,
∴∠MAD+∠MDA=90°,
∴∠M=90°
∴△EMF是直角三角形,
∵∠EAB+∠MAD=90°,
∴∠EAB=∠MDA,
在△AEB和△DMA中,
|
∴△AEB≌△DMA,
∴AM=BE=8,MD=AE=6,
∴EM=MF=14,
∴EF=
ME2+MF2 |
2 |
故选C.
看了 如图,在正方形ABCD中,A...的网友还看了以下:
25℃时,关于某酸(用H2A表示)下列说法中,不正确的是()A.pH=a的Na2A溶液中,由水电离 2020-05-17 …
在直角坐标系中,E.F分别是X轴负半轴和正半轴上一点,G是Y轴正半轴一点,且∠OGE=∠OGH.( 2020-06-02 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
a+b+c+d+e=abcde,a,b,c,d,e均是正整数,求e的最大值由于a,e在式中对称,故 2020-06-09 …
期望的性质:E(AX)=AEX,E(X+a)=EX+a,那么E(X^2)是什么?以正态分布为例正态 2020-06-10 …
设A,B均为n阶方阵,E为n阶单位阵,且(A-E)(B-E)=0A=E或B=E|A-E|=0或|B 2020-06-18 …
已知正方形ABCD中,边长为4,E为AB边上的一动点,(E为A,B点不重合),设AE=x,以E为顶 2020-08-03 …
A是n阶方阵,且满足A^2=E,则下列结论正确的是()A:若A不等于E,则A+E不可逆B:若A不等于 2020-11-02 …
把给的字母中多余的一个字母丢掉,再把正确的单词拼出来(1)s,t,e,b,a,k,e(2)r,t,a 2020-12-14 …
1.实二次型正定的充要条件是().A、|A|>0B、A与E合同C、A的各阶顺序主子式>0D、正定E、 2021-01-08 …