早教吧作业答案频道 -->数学-->
点P在直径AB=1的半圆上移动,过P作圆的切线PT,且PT=1,∠PAB=α,问:α为何值时,四边形ABTP面积最大?已知函数f(x)=sin(ωx+π/6)+sin(ωx-π/6)-2cos(ωx/2)^2,x∈R(其中ω>0)(1)求函数f(x)的值域.(2)若对任
题目详情
点P在直径AB=1的半圆上移动,过P作圆的切线PT,且PT=1,∠PAB=α,问:α为何值时,四边形ABTP面积最大?
已知函数f(x)=sin(ωx+π/6)+sin(ωx-π/6)-2cos(ωx/2)^2,x∈R(其中ω>0)
(1)求函数f(x)的值域.
(2)若对任意的a∈R,函数y=f(x),x∈(a,a+π]的图象与直线y=-1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y=f(x),x∈R的单调增区间.
已知函数f(x)=sin(ωx+π/6)+sin(ωx-π/6)-2cos(ωx/2)^2,x∈R(其中ω>0)
(1)求函数f(x)的值域.
(2)若对任意的a∈R,函数y=f(x),x∈(a,a+π]的图象与直线y=-1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y=f(x),x∈R的单调增区间.
▼优质解答
答案和解析
第一道,连结AP,AB为直径,则∠APB=90°
设圆心为O,连结OP,则OA=OP,所以∠PAO=∠APO=a
PT是圆的切线,则OP⊥PT,所以∠APT=90°-a
AB=1,PT=1
所以,AP=ABcosa=1*cosa=cosa
S△ABP=1/2*AB*APsina=sinacosa/2=sin2a/4
S△APT=1/2*PA*PTsin(90°-a)=cos²a/2=2cos²a/4=(cos2a+1)/4
所以
S四边形ABPT
=S△ABP+S△APT
=sin2a/4+(cos2a+1)/4
=(sin2a+cos2a+1)/4
=[√2*sin(2a+45°)+1]/4
≤(1+√2)/4
当且仅当sin(2a+45°)=1,2a+45°=90°,a=22.5°时取等号
所以,当a=22.5°,四边形ABPT面积最大,最大值为(1+√2)/4
第二道,解
(1)f(x)=sin(ωx+π/6)+sin(ωx-π/6)-2cos^2(ωx/2),
=sinωxcosπ/6+cosωx sinπ/6+sinωxcosπ/6-cosωx sinπ/6-1-cosωx
=√3sinωx-cosωx-1
=2sin(ωx-π/6)-1故-3 ≤f(x) ≤1
(2)由2sin(ωx-π/6)-1=-1
得sin(ωx-π/6)=0
在一个π内有且仅有两个不同的交点,即周期为π
ω=2
单调增区间:
2kπ-π/2
设圆心为O,连结OP,则OA=OP,所以∠PAO=∠APO=a
PT是圆的切线,则OP⊥PT,所以∠APT=90°-a
AB=1,PT=1
所以,AP=ABcosa=1*cosa=cosa
S△ABP=1/2*AB*APsina=sinacosa/2=sin2a/4
S△APT=1/2*PA*PTsin(90°-a)=cos²a/2=2cos²a/4=(cos2a+1)/4
所以
S四边形ABPT
=S△ABP+S△APT
=sin2a/4+(cos2a+1)/4
=(sin2a+cos2a+1)/4
=[√2*sin(2a+45°)+1]/4
≤(1+√2)/4
当且仅当sin(2a+45°)=1,2a+45°=90°,a=22.5°时取等号
所以,当a=22.5°,四边形ABPT面积最大,最大值为(1+√2)/4
第二道,解
(1)f(x)=sin(ωx+π/6)+sin(ωx-π/6)-2cos^2(ωx/2),
=sinωxcosπ/6+cosωx sinπ/6+sinωxcosπ/6-cosωx sinπ/6-1-cosωx
=√3sinωx-cosωx-1
=2sin(ωx-π/6)-1故-3 ≤f(x) ≤1
(2)由2sin(ωx-π/6)-1=-1
得sin(ωx-π/6)=0
在一个π内有且仅有两个不同的交点,即周期为π
ω=2
单调增区间:
2kπ-π/2
看了 点P在直径AB=1的半圆上移...的网友还看了以下:
英语翻译t=0:.001:.25;x=sin(2*pi*50*t)+sin(2*pi*120*t) 2020-05-12 …
∮1dx/(x^2+y^2+z^2)ds,其中,曲线x=(e^t)sinty==(e^t)cost 2020-06-03 …
求y=(sqr(5)*sinx+1)/(cosx+2)的值域注:sqr()代表“根号”我用万能公式 2020-06-06 …
7.计算旋转体体积时,参数方程{x=φ(t),y=ψ(t)中,为何y(x)=ψ(t)8.x^2+y 2020-08-02 …
7..计算旋转体体积时,参数方程{x=φ(t),y=ψ(t)中,为7.计算旋转体体积时,参数方程{ 2020-08-02 …
高中函数变量代换法求高手指教.已知x≠0,函数f(x)满足f(x-1/x)=x^2+1/x^2,则 2020-08-03 …
求f(x)=[(x^2+4)/√(x^2+3)]+1我的方法做不下去基本不等式法设√(x+3)=t 2020-08-03 …
∫xe^x/(√e^x-2)dx这个我要t=(√e^x-2)最后得到∫(t^2+2)ln(t^2+ 2020-08-03 …
不是只有连续函数的积分上限函数才具有可导性吗?那么下面这个求极限的过程是不是有问题?lim(x->0 2020-11-15 …
定义在R上的函数f(X)满足f(X+1)=2f(X),若当0≤x≤1时,f(X)=x(1-x),则当 2020-12-27 …