早教吧作业答案频道 -->数学-->
已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的
题目详情
已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB于点H,CD平分∠ACB.

(1)求证:∠1=∠2.
(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;
(3)△AEB是什么三角形?证明你的猜想.

(1)求证:∠1=∠2.
(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;
(3)△AEB是什么三角形?证明你的猜想.
▼优质解答
答案和解析
证明:(1)Rt△ABC中,∠ACB=90°,
∵M是AB边的中点,
∴AM=CM=BM,
∴∠CAB=∠ACM,
∴∠CAB=90-∠ABC,
∵CH⊥AB,
∴∠BCH=90-∠ABC,
∴∠CAB=∠BCH,
∴∠BCH=∠ACM,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ACD-∠ACM=∠BCD-∠BCH,
即∠1=∠2;
(2)∵EM⊥AB,CH⊥AB,
∴EM∥CH,
∴∠HCD=∠MED,
∵∠HCD=∠MCD,
∴∠MCD=∠MED,
∴CM=EM;
(3)△AEB是等腰直角三角形,
∵CM=EM AM=CM=BM,
∴EM=AM=BM,
∴△AEB是直角三角形,
∵EM垂直平分AB,
∴EA=EB,
∴△AEB是等腰三角形,
∴△AEB是等腰直角三角形.
∵M是AB边的中点,
∴AM=CM=BM,
∴∠CAB=∠ACM,
∴∠CAB=90-∠ABC,
∵CH⊥AB,
∴∠BCH=90-∠ABC,
∴∠CAB=∠BCH,
∴∠BCH=∠ACM,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ACD-∠ACM=∠BCD-∠BCH,
即∠1=∠2;
(2)∵EM⊥AB,CH⊥AB,
∴EM∥CH,
∴∠HCD=∠MED,
∵∠HCD=∠MCD,
∴∠MCD=∠MED,
∴CM=EM;
(3)△AEB是等腰直角三角形,
∵CM=EM AM=CM=BM,
∴EM=AM=BM,
∴△AEB是直角三角形,
∵EM垂直平分AB,
∴EA=EB,
∴△AEB是等腰三角形,
∴△AEB是等腰直角三角形.
看了 已知:如图,在Rt△ABC中...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
能判定△ABC与△A'B'C'相似的条件是( )A.A'B'分之AB=A'C'分之AC B. 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
求教分析一道代数式值题的解答过程.题目是这样的:已知(b+c)/a=(a+c)/b=(a+b)/c 2020-05-20 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
a(b-c)^5+b(c-a)^5+c(a-b)^5分解为(a-b)(b-c)(c-a)L(aa( 2020-07-09 …
求证:A∩(B∪C)=(A∪B)∩(A∪C)(1)假设x∈A∩(B∪C),则x∈A且x∈B∪C,所 2020-07-20 …
设a,b,c都是正数且a+b+c=1,求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b) 2020-07-25 …
有三个数a,b,c,其中满足a+b>c,b+c>a,a+c>b,结果是有三个数a,b,c,其中满足a 2020-11-01 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …