早教吧作业答案频道 -->数学-->
已知α1,α2,α3,α4是四维非零列向量,记A=(α1,α2,α3,α4),A*是A的伴随矩阵,若齐次方程组Ax=0的基础解系为(1,0,-2,0)T,则A*x=0的基础解系为()A.α1,α2B.α1,α3C.α1,α
题目详情
已知α1,α2,α3,α4是四维非零列向量,记A=(α1,α2,α3,α4),A*是A的伴随矩阵,若齐次方程组Ax=0的基础解系为(1,0,-2,0)T,则A*x=0的基础解系为( )
A. α1,α2
B. α1,α3
C. α1,α2,α3
D. α2,α3,α4
A. α1,α2
B. α1,α3
C. α1,α2,α3
D. α2,α3,α4
▼优质解答
答案和解析
Ax=0的基础解系只含有一个向量,所以矩阵A的秩为3,
∴A存在不为0的3阶子式,即A*不为0
∴r(A*)≥1
又因为,此时
=0,由AA*=
E=0,知r(A)+r(A*)≤4
∴r(A*)≤1
∴r(A*)=1
∴A*x=0的基础解系含有三个向量
∴正确答案只可能是C或者D
∵(α1,α2,α3,α4)
=0
即α1-2α3=0
∴α1与α3线性相关
而方程组的基本解系必须是线性无关的向量
∴正确答案为D.
∴A存在不为0的3阶子式,即A*不为0
∴r(A*)≥1
又因为,此时
|
|
∴r(A*)≤1
∴r(A*)=1
∴A*x=0的基础解系含有三个向量
∴正确答案只可能是C或者D
∵(α1,α2,α3,α4)
|
即α1-2α3=0
∴α1与α3线性相关
而方程组的基本解系必须是线性无关的向量
∴正确答案为D.
看了 已知α1,α2,α3,α4是...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
两数和的平方求值(1)已知a+b=6,a-b=2,求a^2+b^2的值(2)已知a(a-1)-(a 2020-06-14 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
2(a+b)^2-(a+b)2(a-b)^2-a+b(x+y)^2+mx+mya(x-a)(x+y 2020-06-18 …
分解因式1.a^4-27a^2b^2+b^4=a^4-2a^2b^2+b^4-25a^2b^2=( 2020-07-14 …
向量a的模=13,向量b的模=19,|a+b|=24,求|a-b||a+b|^2=|a|^2+|b 2020-07-19 …
matlab-1/18*pi*(2*a+3-b)^2*(2*a-b-6)+1/18*pi*(-6* 2020-07-24 …
余弦定理a^2=b^2+c^2-2*b*c*cosAb^2=a^2+c^2-2*a*c*cosBc 2020-07-29 …
﹙a-2﹚^2-6﹙2﹣a)与18(a-b)^3-12b(b-a)^2为何式子一=﹙a-2﹚^2+ 2020-07-30 …