早教吧作业答案频道 -->数学-->
lim[1/(n+1)+1/(n+2)+..+1/(n+n)]=n->无穷
题目详情
lim [1/(n+1)+1/(n+2)+..+1/(n+n)]=____n->无穷
▼优质解答
答案和解析
lim(n→∞) 1/(n + 1) + 1/(n + 2) + ...+ 1/(n + n)
= lim(n→∞) Σ_(k=1→n) 1/(n + k)
= lim(n→∞) Σ_(k=1→n) 1/(1 + k/n) · 1/n
= ∫(0→1) dx/(1 + x)
= ln(1 + x) |(0→1)
= ln(2) - ln(1)
= ln(2)
= lim(n→∞) Σ_(k=1→n) 1/(n + k)
= lim(n→∞) Σ_(k=1→n) 1/(1 + k/n) · 1/n
= ∫(0→1) dx/(1 + x)
= ln(1 + x) |(0→1)
= ln(2) - ln(1)
= ln(2)
看了 lim[1/(n+1)+1/...的网友还看了以下:
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列一题设函数f(n)=n(n为自然数,奇数)=n/2(n为自然数,偶数)设数列an=f(1)+f 2020-07-30 …
函数映射方面的题设A={1,2,3,m},B={4,7,n^4,n^2+3n},对应关系:f=x→ 2020-07-30 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …
设f(x)=lim[(n-2)(x^2+x-2)]/[n(x^2+3x+2)+1]x→+∞thank 2020-11-27 …
求数列an=n(n+1)的前n项和.an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+ 2020-12-03 …
求函数f(x)lim(n趋向于无穷)x^(n+2)-x^(-n)/x^n+x^(-n-1)的连续区间 2020-12-15 …