早教吧作业答案频道 -->数学-->
已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m-3)<0,求m的取值范围.(参考公式:a3-b3=(a-b)(a2+ab+b2)
题目详情
已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m-3)<0,求m的取值范围.
(参考公式:a3-b3=(a-b)(a2+ab+b2))
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m-3)<0,求m的取值范围.
(参考公式:a3-b3=(a-b)(a2+ab+b2))
▼优质解答
答案和解析
(1)f(x)是R上的奇函数
证明:∵f(-x)=-x3-x=-(x3+x)=-f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1-x2<0,
f(x1)-f(x2)=(x1-x2)+[(x1)3-(x2)3]=(x1-x2)[(x1)2+(x2)2+x1x2+1]=(x1-x2)[(x1+
x2)2+
x22+1]<0恒成立,
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m-3)<0,可化为f(m+1)<-f(2m-3),
∵f(x)是R上的奇函数,∴-f(2m-3)=f(3-2m),
∴不等式进一步可化为f(m+1)<f(3-2m),
∵函数f(x)是R上的增函数,
∴m+1<3-2m,
∴m<
证明:∵f(-x)=-x3-x=-(x3+x)=-f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1-x2<0,
f(x1)-f(x2)=(x1-x2)+[(x1)3-(x2)3]=(x1-x2)[(x1)2+(x2)2+x1x2+1]=(x1-x2)[(x1+
1 |
2 |
3 |
4 |
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m-3)<0,可化为f(m+1)<-f(2m-3),
∵f(x)是R上的奇函数,∴-f(2m-3)=f(3-2m),
∴不等式进一步可化为f(m+1)<f(3-2m),
∵函数f(x)是R上的增函数,
∴m+1<3-2m,
∴m<
2 |
3 |
看了 已知函数f(x)=x3+x....的网友还看了以下:
设函数f(x)=x^2-alnx与g(x)=(1/a)x-根号x的图像分别交直线x=1于点A,B, 2020-04-05 …
分解因式:(1)4a2b-6ab2+2ab(2)6(a-b)2-12(a-b)(3)x(x+y)2 2020-04-08 …
若x+2乘x的二次方-3=5,则6-3x-6乘x的二次方=?我知道因为x+2乘x的二次方-3=5, 2020-04-27 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
观察下列各式...(X^2-1)除以(X-1)=X+1;(X^3-1)除以(X-1)=X^2+X+ 2020-07-18 …
二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的x与y的部分对应值如下表:有下列结论: 2020-07-22 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
f(x)=e^x/(1+ax^2),a为正实数f(x)为R上的单调函数,求a的取值范围.我看了f( 2020-08-02 …
函数f(x)定义域为I,存在非零常数T,对于任意的x∈I,都有f(x+T)=-f(x),则f(x)是 2020-12-07 …